Introduction

In the following I attempted to give an account of some parts of semantics of typed
lambda calculi. The work is divided into two parts. In the first part I briefly study syntax
and categorical semantics of simply typed lambda calculus. In the second part I then
concentrate on second order lambda calculus. In chapter 3 I give a definition of second
order lambda calculus and discuss some aspects of its syntax. In chapter 4 I give a general
definition of a model of second order lambda calculus and briefly describe two concrete
models. In the fifth chapter I give a detailed description of an important model of second
order lambda calculus based on Scott domains.

My main goal was to describe ideas which led to the definition of second order lambda cal-
culus and to present several different approaches to modelling second order lambda calculus.
I paid special attention to showing some connections between these approaches.

The work was derived from the papers cited in References. Sometimes, when I thought
it useful, I supplied some details, proofs and examples.

This paper was written during my stay at Brno University as a part of my Mgr. course
in discrete mathematics. I would like to thank prof. J. Rosicky for supervising my study at
that time.

0 Categories

Before we start, it will be better to review some necessary notions from category theory,
mainly in order to standartize notation.

Definition. Let C be a category, A, B € C. The product of A and B is an object A x¢ B
(where the index is clear from context we will omit it) together with projections

fStAyBZAXB%A
sndyp: AxB—B

such that, for any C' € C and any pair of morphisms f: ' = A and g: ' = B, there is a
unique morphism h: C'— A x B such that

fstoh=f
sndoh =g.

Remark. Given morphisms f: Ay — As, g: By — Bs such that A; x By and As; x Bs
exist. Then f x g denotes the uniquely determined morphism from A; x By to As x By
which makes the following diagram commute

A1 L) A2

fstT Tfst

A x By &)AQXBQ.

sndl lsnd

Bl —_— Bz
g

Definition. A cartesian closed category C is a category satisfying the following:

(1) There is a terminal object 1¢.

(2) For each pair of objects A and B of C there is a product A x¢ B with projections
fstyp: AxcB —+Aandsndyp: A xc B — B.

(3) For each pair of objects A and B of C there is an exponent A —¢ B together with
morphism eval: (A =¢ B) x¢ A = B such that, for any morphism f: C'xc A — B,
there is a morphism Af: C' — (A —¢ B) such that

evalo (Af xidy) = f.

Remarks.

(1)

(2)

We can look at A as an operation A: Homg(C x¢ A, B) = Home(C, A =g B) (it
would be more correct to write /\é’B but we will omit the indexes where possible)
which is an isomorphism natural in C'.

An important point is that we have a given terminal object, product and exponent
for every pair of objects. There are two slightly different notions of a functor pre-
serving the cartesian structure. If functor F': C — C’ preserves terminal objects,
binary products and exponents (i.e. the image of a terminal object in C is a terminal
object in C’ and whenever we have a product diagram

Aet—pP 2B
in the category C, the diagram

£(p) Fa)

F(4)

F(P) F(B)

is a product diagram in C’, similarly for exponents) we say that F' preserves the
cartesian closed structure. If moreover the image of the given terminal object 1¢
in C is the given l¢/ in C', F(A x¢ B) = F(A) x¢ F(B) and F(A —=¢ B) =
F(A) =>¢/ F(B) then we say that I’ preserves the cartesian closed structure on the
nose (sometimes we say that F' is strict).

Sometimes the exponent is defined by means of right adjoints to the functors (=) x¢
A: C — C forevery A € C. Indeed from our definition it follows that in a cartesian
closed category this functor has a right adjoint (usually denoted (—)4: C — C such
that (B)4 = A —¢ B.

Definition. Given two categories C and C’. The product category C x C’ is defined to be
the category which has as objects pairs (A, A’) where A € C and A’ € C’. The morphisms
are pairs (f,g): (a,ad’) = (B, B') where f: A—> Band g: A’ = B’

Remarks.

(1)

We have also projections

Fstcycli CxC — C
Sndcycli CxC — C'.

(Usually we will write Fst and Snd for projection functors and fst and snd for
projection morphisms inside a category).

For 1 <i < m, we put P%T...,Cn: Ci x .-+ x Cp, = C; to be the ith projection.
Given functors F': C — C; and G: C — Cs, < F, G > is then the unique functor
from C to C; x C, such that Fsto < ;G >= F and Sndo < F, G >= G.

If F: C — D and G: C' — D’ are functors then we define

FxG=<FoFst,GoSnd>:CxC' - DxD"

We sometimes write 1 for the category with one object and one arrow (i.e. for the
terminal object in the category Cat — the category of small categories and functors
between them).

6

Definition. Let C and D be categories. An adjunction from D to C is a triple < F, G, ¢ >
such that

(1) F: D — C and GG: C — D are functors (F is called left adjoint of G and G is called
right adjoint of F).
(2) ¢: Home(F—, —) = Homp(—, G—) is a natural isomorphism of hom functors.

Remarks.

(1) So ¢ is a family of mappings indexed by pairs (D,C) where D € D and C' € C
such that ¢p : Homc(F(D),C) — Homp(D,G(C)) is isomorphism. Moreover,
this isomorphism is natural in D and C, that is, for any f: F(D) = C, k: C = '
and h: D' — D, we have

ep,ci(ko f)=G(k)oppc(f)
eprc(fo (k) =¢pc(f)oh.

(2) The natural transformation n: Idp — G o I defined by
np = ¢p po)(idppy): D = G(F(D))

for D € D is called the unit of the adjunction and the natural transformation

€: F oG — Id¢ defined by

ec = @8%@)7C(idG(C): F(G(C) = C

for C' € C is called the counit of the adjunction.

PART 1.
Simply Typed Lambda Calculus

A simply typed lambda calculus is at the basis of all typed systems. Introduced by
Church in 1940 as an attempt to avoid Russell’s paradox, it has become one of the most
important concepts in theoretical computer science as well as in logic. In this part we give
a definition of a simply typed lambda calculus, discuss briefly its syntax and categorical
semantics. | concentrated in this part on describing those features which help to understand
the discussion about second order lambda calculus studied in part II.

1. Syntax

First we define what the terms and the types of a simply typed lambda calculus are.

Definition. The types of a simply typed lambda calculus (over a ground set At) are given
inductively as follows:

(1) every member of At is a type.
(2) If & and 7 are types, then ¢ — 7 and ¢ x T are types.

Remarks.

(1) We shall use small greek letters to denote types.

(2) The intuitive meaning of operators — and x is clear: ¢ — 7 denotes the function
type and o x 1 the product type.

(3) Some authors mean by simply typed lambda calculus a typed system without the
product operator. A typed system with types given as above is then called a simply
typed lambda calculus with explicit pairs.

Definition. The terms of a simply typed lambda calculus are those that can be generated
by the following clauses:

(1) for every type o, there is a countable set {z1, z3,...} variables of type o. We shall
write z: 0.
(2) if x: o is a variable and M : 7 is a term, then Az: o.M is a term of type ¢ — 7. We

say that x 1s bounded in Az: 0. M.
(3) if M: ¢ — 7 and N: ¢ are terms, then M(N) is a term of type 7.
(4) if M: o and N: 7 are terms, then < M, N > is a term of type o x 7.
(5) if M: ox1is aterm, then fst(M) and snd (M) are terms of types o and 7 respectively.

Now we proceed to define the equational theory of simply typed lambda calculus.

Definition. The equational theory of simply typed lambda calculus is defined to be the
minimal congruence relation ”=" satisfying the following axiom schemas:

a: Az o.M = Ay: ofy/x]M
- f: (Az: 0. M)N = [N/x]M
=7 Az o (Mz)y=M
B fst(< M,N >)=M
X3 : snd(< M,N >)=M

xn <fst(M),snd(M) >= M

where the types of the terms are such that the terms are correctly formed. Moreover, in the
a rule y is not free in M and in the — 3 rule z is not free in M.

Remark. Instead of working with equations between terms we could define the notion
of reduction. The previous equations then would become rewriting rules. The immediate
reductions are

- f: (Az: 0. M)N — [N/e]M
=7 Az o (Mz)—> M

B fst(< M,N >)—> M

X3 : snd(< M,N >)—> M

xn < fst(M),snd(M) >— M

(again in the — 3 rule # is not free in M). We then define the reduction to be the smallest
transitive relation containing — and compatible with the formation of terms. We write
M —*N when M reduces to N. We say that a term M is normal if no immediate reduction
can be applied on any of its subterms. A term M 1s strongly normalisable when there is no
infinite reduction sequence starting with M.

Theorem. (1.1) All terms of a simply typed lambda calculus are strongly normalisable
and the normal form is unique.

ProorF. Can be found in [Girard et al. 89]. O

Remark. The type theory presented here has its logical counterpart. The types can be
regarded as formulas of (intuitionistic) first-order propositional logic (based on connectives
A and =). The terms then denote deductions of their types, under hypotheses which
are the types of their free variables. The reduction rules correspond to the eliminations
of unnecessary ”detours” in the deductions. This correspondence between deductions in

natural deduction and terms of simply typed lambda calculus is known as the Curry-Howard
?formulae-as-types” isomorphism.

The question which now comes to mind is what the expressive power of this system is.
For example, is it possible to interpret in this system the type of integers, and if it is so,
what functions between integers can be expressed? Before we answer this questions, we
state the following lemma.

Lemma. (1.2) The only normal terms of type o — 7 and o x 7 are of the forms Az : o.N
and < Ny, Ny > respectively.

PrOOF. We prove both parts of the lemma simultaneously by induction on the structure of
term M. There are five cases.
(1) M =Ae: o.M
(i) Suppose that M is a normal term of type ¢ — 7. It follows that o1 = ¢ and
M is of the required form.
(i1) The case that M is a normal term of type o x 7 is immediately ruled out since
the types are incompatible.
(i) M of type ¢ — 7. Then M; must have type o1 — (¢ — 7) for some type ;.
By induction hypothesis M1 = Azy: 01.M] and so M;(Ms) is not a normal
term.
(i1) M of type ¢ x 7. Then M; must have type o1 — (¢ x 7). Again by induction
hypothesis, My = Azy: o1. M/ and so M;(M>) is not a normal term.
(3) M =< My, Ms >.
(i) M of type o — 7. This cannot happen since the types are incompatible.
(i1) M of type o x . Tt follows that o1 = ¢ and so M is of the required form.
(4) M = fst(My).
(i) Then M; must have type (¢ — 7) x o1 and again by the induction hypothesis
the term fst(M7) is not normal.
(i1) Then M; is of the type (¢ x 7) X o1. By the induction hypotheses M is not a
normal term.
(5) M =snd(My). The same argument as in the previous case applies. O

One way to represent integers in simply typed lambda calculus is to represent them as
the closed normal terms of type

Int, = (6 > o) = (0 =)
where ¢ is a type. Term

ne =Ay: o> aAr:oyly... (y(x)...)
N—_———

n times

then represents the natural number n. We’ll show that this representation is, at least to
some extent, satisfactory.

Lemma. (1.3) Terms n, for some n € N and the identity term \y: ¢ — 0.y are the only
closed normal terms of type Int,.

10

Proor. Take M to be a closed normal term of type Int,. From lemma 1.2 it follows that
M is of the form Ay: ¢ — o.M, where M; is a normal term of type ¢ — o. M; is either a
variable (y and M is then the identity term) or is of the form Az: o. N, where N is a normal
term of type o (extension of the argument in lemma 1.2). Now N is either a variable (and
so) or of the form Ni(N3) (the other cases are immediately ruled out). Ny is a normal
term of type 7 — o. But since N is normal, N1 cannot be of the form Az: 7.N{ and so N;
has to be a variable, and hence N; is # (and 7 = &). N» is a normal term of type o, so it
is again either = or y applied to an expression of type o. It follows that N is of the form
y(y ... (y(x))...) and so M is of the form n, for some n € N. O

So 1t is possible to represent integers but what about functions on them? Given a closed
term f of type Int, — Int,, it induces a function |f| from N to N defined as follows

iy =m i f(@) o

Since the normal form of every term exists and is unique, function |f| is well defined and
total.

Theorem. (1.4) The functions from N to N representable in simply typed lambda calculus
are those that can be generated from constants 0 and 1 using the operations addition,
multiplication and conditional.

ProoF. Can be found in [Fortune et al. 83]. O

So we can see that the class of representable functions is not very big - we can represent
only polynomials extended with the conditional function. So for a real work it is necessary
to create richer typed systems - either by adding new constants and conversion rules (this
is the case of Godel’s system T) or by allowing to perform more powerful operations on
types. One of the typed systems we can get using the latter method is second order lambda
calculus which we will study in Part II.

11

2 Categorical Semantics

The main idea of categorical semantics of a simply typed lambda calculus is to interpret
types as objects and terms as morphisms in some category C'. It isn’t too difficult to see
an analogy between the axioms of a simply typed lambda calculus and the axioms of a
cartesian closed category. When we regard (a type) A x B as the categorical product of
(types) A and B, then <, > is the product morphism and fst() and snd() are the first
and second projection respectively (application of terms now corresponds to composition
of morphisms). The x3;, xf32 and x5 are precisely the axioms defining a product in a
cartesian closed category. A little bit trickier situation arises in the case of exponents - here
we have to deal with the notion of substituion of a term for a free variable - something
which doesn’t have an immediate analogy in a category theory. But this problem can be
overcome. Let’s look a bit closer at our idea. What role do free variables play? A term
M : o, whose free variables are among ©1: 01,...,2,: 0y, 18 to be interpreted as a morphism
from A = o0; x -+ x 0, to 0. Now 1if we have two terms M : ¢ and N: 7 such that free
variables of [N/z]M are among «1: o1, ...,&,: 0,, the substitution of N in M is modellled
by composing M with < ida, N >

<ida,N> M
O XXy ———3 (01 X+ X0p) X0 — 0.

The morphism we have got really has the required domain and codomain. The — § and
— 7 rules are satisfied.

Before we summarize the previous discussion in a formal definition, we define the notion
of a context.

Definition. A context H is a (possibly empty) list of variables, H = (#1: o1,..., 25 op).
A term M: o is said to be legal in a context H (we shall write H =M : o) if every free
variable of M is in H. We shall write H, z: o for a context z1: 01,...,2,: 0n,2: 0.

Definition. Let C be a cartesian closed category and [a map assigning to each atomic
type an object of C. Then the interpretation of simply typed lambda calculus in C' is given
as follows:

(1) A type o is interpreted by object [[¢] of C' defined as follows:
(i) [[e] = I(o) for an atomic type o.
(i) o — 71 = [7] ~c [7]
(iii) o x] =[] xc [7]
(2) A term M: o legal in a context H = (x1: 01, ...,2,: 0p) is interpreted by a mor-
phism
M1 : lo1] ¢ -+ - xe [on] = (o]

in C' defined inductively as follows:
(i) [z:]u = snd o fst"~*
i) [Az: 7. Mg = MMz er)
(i) [M(N)]g = evalo < [M]m, [Nz >

12

(iv) [< M,N >]g =< [M]g, [Nz >
(v) [fst(M)]g =fsto [M]u
(vi) [snd(M)]g =sndo [M]xg

Definition. We say that an equation M = N where M and N are terms legal in context
H is satisfied in the given interpretation if [M]g = [N]#.

From the next theorem it follows that the interpretation given above really makes sence.

Theorem. (2.1) (Soundness) All equational rules for simply typed lambda calculus are
valid under the interpretation given above.

ProoF. A straightforward check of rules. O

So now we have three vertexes of a triangle - a simply typed lambda calculus, the cor-
responding propositional logic and its term model (forming a cartesian closed category).
They represent three different approaches to the same notion. We shall meet with a similar
situation in the case of second order lambda calculus and system AP which is the type theory
of first order predicate logic.

13

PART II.
Second Order Lambda Calculus

A second order lambda calculus was first introduced by Girard in 1970 for the sake of
proof theory of second order intuitionistic logic. Later it was independently rediscovered in
computer science by Reynolds as a part of analysis of parametric polymorphism. Second
order lambda calculus (system F called by Girard) arises as an extension of the simply
typed lambda calculus, obtained by adding an operation of abstraction on types (universal
abstraction). Consider for example a term Az: «.z of a type & — «. Since we made no
assumption about the type «, we can regard « as a free type variable. Second order lambda
calculus then allows us to construct term Aa.Ax: a.x which denotes the “polymorphic”
identity function, that is a function which can be applied to any type ¢ and the result of
the application 1s the identity function Az: o.x on o. The type of polymorphic identity
[Ja.a = @ is obtained from the type oo — o by means of universal abstraction []. So
a term of a type [Je.o is a function which associates to every type 7 an element of type
[r/a]o. Now there is an obvious circularity problem (known as impredicativity of second
order lambda calculus): this term can be applied to any type and so, in particular, also
to its own type. One of the consequences of this circularity is a difficult modelling of the
system. In the following chapter we shall be concerned with the syntax of second order
lambda calculus and with its expressive power.

3 Syntax

Definition. The types of second order lambda calculus are those that can be generated by
the following clauses:

(1) There is a countable set {a, ava, ...} of type variables.

(2) Tf o and 7 are types, then ¢ — 7 is a type.

(3) If o is a type and « is a type variable, then [Ja.o is a type. We say that variable o
is bounded in []e.o.

14

Example. [[a.a, [[o.c0 = o, @ = [[a.f — a are examples of types.

Now we proceed to define the terms of the calculus. Since in the next chapters we will be
interested mainly in the semantics of second order lambda calculus, we use in the definition
the notion of a context.

Definition. A context ¥ is a (possibly empty) list of type variables, ¥ = (aq,...,am) .
We shall write X, o for the context ¥ = (o, ..., am, «). A type ¢ is legal in a context X if
every free type variable of o is in X.

Definition. A type assignment H legal in a context X is alist H = (z1: 01,...,25: 0p) of
typings for variables such that, for 1 <: < n, o; is legal in X.

Definition. Terms of second order lambda calculus are those segments H b M : o (where
H is a type assignment legal in ¥ and we say that M is of type ¢ under assignment H)
derivable by the following typing rules:

projection: Hy,z:0,Hybsz: 0

Hzx:ioi b M:og
HEAz:o0.M: 01 = 09

— Introduction:

Hb M:o
HbgsAaM: J]ao

[1 introduction:

HEM: 0y — 09, HE,N:oy

— elimination: H '_EM(N); o9

HbE M: [[a.o
H b, M{os}: [o2/a]or

[T elimination:

These rules are subject to some restrictions:

(1) In the projection rule, the variable does not appear in Hy or Ha.

(2) In the] introduction rule, there is no free occurrence of « in the type of any variable
in H.
(3) In the [] elimination rule, all free variables of o3 are in X.

Remark. The second restriction ensures that, in a term H g Aa.M: [Ja.o, the type
assignment H is legal in X.

Example. Aa.Az: a2 is a term of type [[o.ac = «. As we already mentioned, this term is
called the polymorphic identity.

Now we define the equational rules of second order lambda calculus.

Definition. An equational rule of second order lambda calculus is an expression H b M =
N : o which is of one of the following forms:

15

reflexivity: Hy,z:oHobyz=2:0

HzxioobM=N:09

& HbE Az M =Az:01.N:01 = 09
Hb M=N:o
t : ’
ype & Hbg Ao M =Aa.N: [Jac
H"EMlleiUl, H"EMQINQZUl—)Uz
congruence:

H '_EMZ(Ml) = Nz(Nl)Z g9

HFEM=N: [[a.o;
H bk, M{os} = N{o2}: [02/alor’

type congruence:

These rules imply that i Fy, M : o is term of second order lambda calculus if and only if
HbE,M = M: 0. Thus, in the remaining rules, we use =, M : o for H b, M = M : 0.

HM=N:o

try: _—
R HigN=M:0
¢ vty HEM=N:o, HEN=P:0
ransitivity: Hr M =Pio
3 HzxioobyM:io9 HEN:oy
' Hb(Ax: o1 M)(N)=[N/z]M: o
Hb, M:oy
type G : — .
H b (Aa.M){o2} = [o2/a]M : [02]/a]oy
. HbEM:01— 03
n Hb oo M(z)=M: 01— 09
HHM: J]a.o
type 1 : > I1

HbrsAaM{a}=M: [lac’

These rules are again subject to certain restrictions:

(1) In the reflexivity rule, the variable £ does not appear in H; or H.

(2) In the type & rule, there is no free occurrence of « in the type of a variable in H.
(3) In the type g rule, there is no free occurrence of « in the type of a variable in H.
(4) In the n rule, the variable does not appear in H.

(5) In the type n rule, the variable o does not apppear in X.

Example. The type 3 rule tells us, for example, that

(Aadz: ax){o} = Ae @ o,

16

i.e. that the value of the polymorphic identity on the type ¢ is indeed the identity function
on o.

Remark. We could again look at the given equations as at rewriting rules. The immediate
reductions now are

g (Az: 0. M)N — [N/x]M
n: Ar: o (Mz)—> M

type 3 : (Aa.M){c} = [o/a]M
type 7 Ao M{a}t—= M

(the restrictions given above apply). The reduction relation —* is defined in the same way
as in the case of simply typed lambda calculus . We have an analogy of theorem (1.1):

Theorem. (3.1) All terms of second order lambda calculus are strongly normalisable and
the normal form is unique.

ProorF. Can be found in [Girard et al. 89]. O

Remark. The Curry-Howard isomorphism for natural deduction can be extended for second
order lambda calculus. The types are the formulas of (intuitionistic) second order propo-
sitional calculus and the terms denote deductions of their types, under hypotheses which
are the types of their free variables. The typing rules J] introduction and [] elimination
correspond to

& Va.o

Ya.o [o2/a]oy’

respectively. The reduction rule (Aa.M){r} < [r/a]M corresponds to the conversion

o
Ya.o

[r/ale

converts to [T/a] o.

3.1 Representation of Types

First we state an analogy of lemma (1.2):

Lemma. (3.2) The only normal terms of type o — 1 and [|a.o are of the forms Ax: o.N
and Aa.N respectively.

PrOOF. The proof is similar to the proof of lemma (1.2). We prove both parts of the lemma
simultaneously by induction on the structure of the term M. There are four cases.

(1) M =Ae: o.M

17

(i) Suppose that M is a normal term of type ¢ — 7. It follows that o1 = ¢ and
M is of the required form.
(i1) The case that M is a normal term of type [Je.o is immediately ruled out since
the types are incompatible.
(2) MEAOzl.Ml.
(i) M of type o — 7. This cannot happen since the type of M would be [[a;.0q1 #
oc—T.
(i1) M of type [Je.o. Tt follows that a; = a and so M is of the required form.
(i) M of type ¢ — 7. Then M; must have type o1 — (¢ — 7). By induction
hypothesis My = Az1: 01.M{ and so M;(M>) is not a normal term.
(i1) M of type [Ja.o. Then M; must have type o3 — ([Je.c). Again by induction
hypothesis, My = Az1: o1. M/ and so M;(M>) is not a normal term.
(4) M = Mi{o1}. Then M; must have type [Je;.0) and again by the induction hy-
pothesis the term M;{o1} is not normal. O

Now we will show how to represent some basic types in second order lambda calculus.

Boolean
We define
Bool = [[a.ae = (ov —).
We show that this type can really represent the type of booleans. Define
True = Aa Az a\y: a.x

False = Aadz: aly: a.y.

Lemma. (3.3) True and False are the only closed normal terms of type Bool.

Proo¥. Take M to be a closed normal term of type Bool. Lemma 3.2 tells us that M is of
the form Aa.Az: e dy: o.N, where (2: o,y o) b, N: o and N is normal. It is easily seen
that NV has to be a variable and so IV is either z or y. O
For Ny, Ns, M of respective types ¢, 0 and Bool we define DNy Ny M of type o by
DNiNoM = M{c}(N1)(Na).
Now by simple calculation we get
DN Ny True = (Aadx: ez a.x){o}(N1)(N2)
— (Az: o y: o.2)(N1)(Na)
— (Ay: o.N1)(N2)
— N
and
DN Ny False = (Aa.Az: ady: a.x){o}(N1)(Na)
— (Ax: 0. Ay: 0.y)(N1)(N2)
= (Ay: 0.y)(N2)
— Ns.

18

Integer

We define
Int = [Jo.a = (o = o) =)

and for n € N we put

n=AxAr:ady:a— ayly... (y(x)...).
N—_———

n times

Lemma. (3.4) The only closed normal terms of the type Int are those of the form m for
somen € N.

PrOOF. Similar to the proof of lemma 1.3. Take M to be a closed normal term of type Int.
By lemma 3.2, M is of the form Ao Az: a.dy: @ — o.N, where (z: o,y: a0 - o) F N: a.
N is either a variable (and so z) or is of the form Ny (N3) (the other cases are immediately
ruled out). Now N is a normal term of type ¢ — «. But since N is normal, N; cannot
be of the form Az: ¢.N{ and so N; has to be a variable, and hence N; is y (and ¢ = «).
N5 1s a normal term of type «, so it is again either « or y applied to an expression of type
a. Tt follows that N is of the form y(y...(y(x))...) and so M is of the form 7 for some
neN. O

We can again define basic functions on Int. For example, the successor function S is
defined by
SM = Ao z: ady: a = a.(y(M{a}(x)(y)))

for M of type Int. We get

ST =AaXr:aly: a = a(y(Aadz: ady: o = ayly.. . (y
=S Aa Az ady: o= a(yAe: ady: a = ayly. .. (y(z
S Aa Az ady: o= a(yAy: a = ay(y. .. (y(x)...)
= Aa iz ady:a = a(yly(y ... (y(=)...)))
=n-41.

Take a closed term f of type Int — Int. Then f induces a function |f| from N to N,
defined as follows:

iy =m i f(@) o

Since every term has a unique normal form, this function is well defined and total. Moreover,
it is recursive — the algorithm for computing it is simple: write the term f(7), normalize
it (since the terms are strongly normalizable, any normalization strategy will do), observe
that the normal form is 7 (by the previous lemma) and put |f|(n) = m. The next theorem
tells us what is the class of functions representable in second order lambda calculus.

Theorem. (3.5) The class of functions from N to N which are of the form |f| for some f
1s exactly the class of provably total functions in second order Peano arithmetic.

Proo¥. For the proof see [Girard et al. 89]. O

19

Product of types

We define
oxt=[la.(c = (t—a)>a

and for M of type o and N of type 7 we put
< M,N>=Acz:0 = (1 = a).(x(M)(N)).
The projections are defined as follows:

™M = M{c}(\z: o \y: 7.%)
™M = M{r}(\x: o y: 1.y).

Let us calculate 7t < M, N > and 72 < M, N >:

™ < M,N>=(AaAz: o — (1= a).(z(M)(N)) ot Ax: o)y r.x)
S Moo (to o) (x2(M)(N)(Ax: o.Ay: T.1)
— (Az: oAy T.x)(M)(N)
— (Ay: . M)(N)
— M

< M,N>=(Aadz: o — (1=). (e(M)(N)W{rH Az : o dy: T.y)
=S Moo (Tt 1) (e(M)(N))Ax: o Ay: T.y)
— (Ax: oAy T.y)(M)(N)
= (Ay: Ty)(N)
— N.

Binary trees

We define
Bintree = [[a.a = ((a = (& = &) = «)

and for M, N of type Bintree we define

nil = AaAz: ady: o = (o = a)x
couple MN = Aadz: ady: o = (o = o). y(M{a}(2)(y)) (N{a}(z)(y)).

nil then represents the tree consisting only of its root and coupleM N is the tree constructed
from the trees M and N by adding a common root.

These are only examples of the considerable expressive power of the system. More exam-
ples can be found in [Girard et al. 89].

20

4 Categorical Semantics

In this chapter we give a definition of what constitutes a (categorical) model of a second
order lambda calculus (a polymorphic category). Two concepts play a vital role in ideas
that led to its definition - that of a cartesian closed category as a model of a simply typed
lambda calculus and that of Lawvere’s hyperdoctrine. So before we start with the definition
of a polymorphic category, we will make a short detour and explain in the following section
the latter of these two terms.

4.1 Hyperdoctrines

In [Lawvere 69] was introduced the concept of a hyperdoctrine. In it Lawvere for the
first time used a method which was later generally considered satisfactory for modelling
existentional and universal quantification categorically.

Let us consider a (many-sorted) first order intuitionistic predicate logic based on connec-
tives A, = and V. Such a logic is given by the following:

(1) A many sorted signature X specified by

(i) aset A of sorts; A ={A,B,...}.

(i1) aset F of operators; F = {f,g,...} together with a mapping assigning to each
operator its type which is a non-empty type list of sorts - we shall use notation
f:AL.. A, > B.

(iii) aset R of relational symbols; R = {R, @, ...} together with a mapping assign-
ing to each relational symbol its type - we shall use notation R C Ay ... A,.

(2) For each sort A € A we have a countably many variables of that sort. Terms over ¥
are defined recursively as follows:

(i) every variable of sort A is a term of sort A (notation x: A.

(i) if f: Ay... A, — B is an operator and t1: Ay,...,t,: Ay are terms, then
f(t1,...,tn) is a term of sort B.

Context x is a list of (distinct) variables. A term ¢ is said to be legal in context x if
all variables occuring in ¢ are in x.
(3) Formulas over X are given inductively as follows:

(i) R(t1,...,tn) is an (atomic) formula for each relational symbol R C A; ... A,
and terms t1: Aq,..., 1, Ay,

(ii) T is a formula (the truth).

(iii) if ¢ and ¢ are formulas and z: A a variable of sort A, then ¢ A ¢, ¥ = ¢,
Va: A.yp are formulas.

A formula ¢ is legal in context x if all free variables of ¢ are in x. A sequent is an

expression of the form ;| 1 where ;| 1s a list of formulas. A sequent , F ¢ is legal

in a context x (notation , F14 (x)) if x contains all free variables of , and .

(4) Rules of inference are given below:

Weakening : % forxCy. Identity : m

T: — A LAY . 720
, FT () y P AS ()
e () , B (x,y)

= —_— vV: ————
LR =9 () , FVy:r A (x)

CFY 0 AYFS(
Cut ALFa0)

21

Note that in the ¥ rule y ¢ x and y is not a free variable of , or ¢ (for the sequent

below the line to be well formed).
There are rules of two forms. A collection of sequents is closed under the

rule if whenever it contains the sequents above the line, it also contains the sequent

below the line. It is closed under the
the thick line if and only if it contains the sequent below the thick line.

Definition. A hyperdoctrine is a tuple (7, P) where

(1) T is a cartesian closed category.
(2) P:TOF — Cat is a functor such that
(i) for each object X of T', P(X) is a cartesian closed category.

rule when it contains the sequents above

(i) for each morphism f: X — Y in T, P(f) preserves the cartesian structure on

the nose.

(iii) for each morphism f: X — Y in T, there is given a functor [f: P(X) — P(Y)

which is the right adjoint to P(f): P(Y) — P(X).

Now we can interpret the logic in a hyperdoctrine (T, P). This interpretation is given by

the following:

(1) A structure M in T for ¥ specified by
(i) an object M A of T for each sort A,
(i1) a morphism M f: MA; x --- x MA, = MB in T for each operator
f: A A, = B.

(iii) anobject M R of P(M Ay x---x M Ap) for each relational symbol R C Ay ... A,.

(2) Term t: B legal in context x = (x1: Ay, ..., 25 A,) is interpreted by morphism

Mtlx: MA; x ---x MA, - MB

in T given inductively as follows:
(i) [z:]x = sndo fst" %,
(i) [f(t1,...,tm)]x where f: By ...By — B is the composition

<[t1lx, -, [tmlx>
—_——

MA, x - x MA, MBy x --x MB,, —" s mB.

22

(3) Formula v legal in context x = (#1: Ay,...,2n: Ap) is interpreted by object [¢]x
of category P(MA; x --- x M A,) given inductively as follows:
(i) [Tlx = 1p(ama,x.-xsma,) (the terminal object).
(i) [R(t1, .. t;m)]x = P(< [t1llxs - - - [tmlx >) (M R).
(iii) [A ¢lx = [¥]x x [¢]x (the categorical product).
)
)

—

(iv) [¢ = ¢lx = [¥]x — [¢]x (the exponent).

(v) IVy: Adlx = [Tfstara, s xma, ma([¥]xy)-
(4) We say that a sequent , ¢ legal in a context x is satisfied in the structure M if

there is a morphism p: [cp[v]x = [¥]x in P([JMA).

Theorem. (4.1) Soundness The collection of sequents satisfied in M is closed under the
rules of intuitionistic predicate logic.

ProoF. We won’t give here a whole proof of this theorem (although it isn’t difficult to
prove it, the proof is lengthy and tedious). Most of it follows from the fact that a cartesian
closed category satisfies the rules of intuitionistic propositional calculus (an analogy of the
Soundness theorem for simply typed lambda calculus). What we have here in addition is
the V rule. We’ll show that it is satisfied. First note that when y ¢ x and y is not a free
variable of ¢ then

[[1/)]]){,3/ = P(fSt)[W)]]x

Take a sequent , 1 legal in context x, y such that y i1s not free in ¢ or , . It is satisfied in
a structure M iff there 1s a morphism

p: [T ey = [¥lxy-

yer

Now

[T 10xs = [T PEst)[7]x = Pest) ([[11x)

~ver ~ver ~ver

(since P(fst) preserves the cartesian closed structure on the nose). []fst is a right adjoint
to P(f) so there is a morphism

p: P(£st) ([17T) = [¥0xy

yer

iff there 18 a morphism

7 H[['y]]x = [Vy: A¢]x

yer

iff M satisfies , FVy: A.¢p in context x. So the V rule is satisfied. O

Remarks.

(1) The semantics presented above could be extended to a semantics of a logic with
V, =, 3 connectives and the corresponding rules. We would then need to enrich
our definition of a hyperdoctrine by finite sums and left adjoints for all P(f) (the
existentional quantification would be interpreted using the left adjoints to P(fst)).

23

(2) We didn’t need all the features of a hyperdoctrine (for example we needed only right
adjoints to P(fst) and not to all P(f)). These features become necessary when we
want to model a predicate logic with equality.

(3) Let us mention that the logic presented in this section and its categorical interpre-
tation have also their counterpart among type systems - called the AP system.

4.2 Polymorphic Category

From the beginning the study of the semantics of a second order lambda calculus lagged
behind the study of its syntax. Obviously, the main difficulty in modeling a second order
lambda calculus lies in the interpretation of universal type [Jo.c. We can think of a type as
the set of all objects having that type and of a type ¢ — 7 as the set of functions from o to
7. What should then the type [Ja.o represent? A typical term of this type is Aa.M where
M has type 0. We can apply this term to any type 7 and get a term [7/a]M of type [r/a]o.
Thus Aa.M is, in fact, a type-indexed family of terms and [Ja.c would be the collection
of such families. Therefore our attempt would be to take [Jo.o as the product [[. [r/a]o
indexed over all types 7. Putting this in more category-theoretic terms; we would have
a small category Tp with exponentations and products indexed by the set Tp of objects
of Tp and a full and faithful functor G from Tp to the category of sets preserving these
products and exponentations. In [Reynolds 84] is shown by a simple cardinality argument
that there are no non-trivial such Tp, G, i.e. that any such Tp can only contain sets with
at most one element. It follows that none of the standard set-theoretic interpretations of
the first order typed lambda calculus can be extended to the model of second order lambda
calculus. So to be able to find a model of second order lambda calculus, we have to depart
from the naive approach of letting A-terms denote functions and types sets of functions.

In last ten years, there was a considerable progress in the study of semantical problems
and a number of models was presented. One solution, quite common, is to follow the way
which McCracken used in producing his model based on Scott’s model Pw [McCracken
79], i.e. to start with some suitable model of untyped lambda calculus and interpret types as
subsets of this model satisfying some closure properties. To illustrate this method we, in the
next section, briefly describe one of these models, the one based on the partial equivalence
relation (PER) model of lambda calculus.

In 1986 Girard in [Girard 86] presented a different kind of model. Tt was based on a
category of qualitative domains and projection-embedding pairs and in this model types
where interpreted, quite pleasingly, as qualitative domains. His ideas can be applied also to
other categories of domains what has been done in [Coquand et al. 87] for the category of
dI-domains, in [Girard et al. 89] for coherent domains (coherent spaces) and in [Coquand
et al. 89] for the category of Scott domains. In the fifth chapter we give a detailed
description of one of these models, the one based on the category of Scott domains.

In this kind of models the types with m free variables are interpreted as some functors
(Tp)™ — Tp, where Tp is a (cartesian closed) category of closed types. In [Bainbridge et
al. 89]isused yet another approach to the modelling of second order lambda calculus. Types
are here interpreted as functors (Tp©Y)™ x (Tp)™ — Tp. This idea and its application on

24

the PER model is briefly discussed in section 4.4.

A general definition of what constitutes a model of a second order lambda calculus was
first given by Bruce and Meyer - see [Bruce et al. 90]. Later a more categorical definition
of a model was proposed by Seely [Seely 87] (and similar definition was used by Pitts in
[Pitts 87]). Definitions given by Seely and Bruce and Meyer are not completely equivalent
and now it seems that Seely’s definition captures wider range of models, for example the
model proposed by Girard is indeed a model in the sence of Seely but it is not a model if
we follow verbatim the Bruce and Meyer definition.

The rest of this section is based mainly on paper [Seely 87] where Seely gave a definition
of a model of higher order polymorphic lambda calculus. The definition we give here is a
restriction of Seely’s to second order lambda calculus. Some other smaller changes were
needed, too (Seely models calculus with product types and sum operator in addition to
our implication and universal abstraction). For further references see also [Pitts 87] and
[Asperti and Longo 91].

The starting point is the equivalence between cartesian closed categories and simply typed
lambda calculi (with product types). The categorical semantics of second order lambda
calculus generalizes this semantics. We need to have some (cartesian closed) category €
whose objects interpret closed types. Then we have to give some meaning to the context
Y = (a1,...,am) and to the types o legal in this context. Quite natural thing to do is
to interpret contexts as products Q7 = Q x --- x Q and types as morphisms ¢: Q7 — Q.
Moreover we have to deal with the substitution of a type legal in one context for a type legal
in another context. Consider, for example, the type I—(aﬁ) a — (. Then we can substitute
the type kv for both o and 3 to get -, v — 7. So we need a substitution mapping from
the types legal in the context («, 8) to the types legal in the context 4 (an analogy of the
“term” mapping P(f) from the previous section).

When we fix one particular context, the types and the terms legal in this context should
form a model of simple typed lambda calculus, i.e. they should form a cartesian closed
category, whose objects are the types and morphisms the terms.

The best way how to formalize all this is to use methods of indexed category theory. A
model of second order lambda calculus will be a (contravariant) functor G: SOP 5 Cat
from some cartesian closed category S (global) with distinguished object € to the category
Cat of small categories such that for every C' € S, the category G(C) (local) is cartesian
closed (intended to interpret types and terms legal in the particular context). Now, as we
already mentioned, types legal in a context ¥ = (a1,...,an) appear both as objects in
G(Q2™) and as morphisms Q™ — Qin S. So it is natural to require ObjG(C') = Homg(C, £2).
Morphisms f: C' = D in S should interpret types substitution and so G(f): G(D) = G(C)
should preserve the cartesian structure (on the nose).

Finally, universal abstraction is interpreted using adjoint functors between local categories
in a way presented in the previous section.

We sum up these ideas in the following definition.

Definition. A polymorphic category is a triple (S, G, Q) where
(1) S is a cartesian closed category (called global category).
(2) Qis a distinct object in S.
(3) G:S°P — Cat is a functor such that
(i) for each object C'in S, ObjG(C) = Homg(C, §2) and for each morphism f: C' —
D, G(f): G(D) = G(C) acts on objects as Homg(f,) (so G(f) is defined

25

by composition).
(i) for each C'in S, G(C') is a cartesian closed category (called local category) and
for each f: C'— D, G(f) preserves the cartesian closed structure on the nose.
(iii) for each C' in 8, there is an adjunction < G(fstc), [[o, ¢c >: G(C) —
G(C x Q) where fstco: C x Q@ — C is the first projection morphism of the
binary product in S. Moreover, these adjunctions are natural in (', i.e. for any

fiC—>DinS, G(f)o[lp = [Ie o G(f x idg).

Remarks.

(1) We could give a definition of a polymorphic category as a S-indexed category G.
Then < G(fst_ q),][, ¢ > would form an S-indexed adjunction between G and G
where G is an S-indexed category defined by G*(C) = G(C x Q) and G(f) =

(2) Yoneda lemma implies that in a PL category (S, G, 2) there are morphisms

Xg: 0 xQ—=Q
—0: 2 xQ—=Q
[To: 9% —=Q

such that for any €' € S and for any f,g € G(C) = Homg(C,)

[Xag)g=x0o< f,9>
[—acyg=—00<fg>

and for any h € G(C' x Q) = Homg(C' x £,Q)

[1e (k) = [1o oAk

(where xg(cy), —a(c) denotes the binary product and the exponentation in the local
category G(C) and Ah: C — Q% is the arrow induced by the cartesian structure of
S).

We now define the interpretation of the second order lambda calculus in a polymorphic
category (S, G,). This interpretation straightforwardly follows the reasoning which led to
the definition of a polymorphic category.

Definition. An interpretation of second order lambda calculus in a polymorphic category

(S, G, Q) is defined as follows:

(1) A context ¥ = (a1,...,qy) is interpreted by the object Q™ = ((1g x Q) x -+ x Q)
of the global category S. We use notation

xp=am
(2) A type o legal in a context ¥ = (aq,...,) is interpreted by a morphism

[ells: [X] — ©

26

in S defined inductively as follows:
(i) Jeils = snd o fst™ ¢
(i) Jo— 7]z = xo < [o]ls, [7]s >
(i) [T ols = [T, oA([o]s.0)
(3) A type assignment H = (#1: 01,...,&5:) legalin a context ¥ = (ay, ..., o) is
interpreted by the product

[Hls = (- (gqsp x [oils) x - x [oa]ls)

in the local category G([X]).
(4) A term H b M : o is interpreted by a morphism

[M]sm: [H]s = [ols

in G([X]) defined inductively as follows:
(1) [=ils.x =snd o fst? 7
11) [[/\l‘ T.M]]E;H = /\([[M]]E;nyﬂ—)
(i) [Aa-M]sn = epsg(IM]s,0;m)
(iv) [M(N)]s;m = evalo < [M]zm, [Nz >
v) [M{r}]z;m = (G(<ida~, [7]z >)(Projisy)) o [M]sa
where Projzy = go[[_zl]] (idgm) is the counit of the adjunction

< G(fstrsy.a). [T e1s1 > G(IED) = G(IE] x Q).

Definition. We say that an equation H -, M = N: ¢ is satisfied under the given interpre-
tation if [[M]]E;H = [[N]]E;H~

Theorem. (4.2) (Soundness) All equational rules for second order lambda calculus are
valid under the interpretation given above.

ProoF. This is just a routine check of required equations. (Complete proof of a similar
theorem for a model of second order lambda calculus based on Scott domains is given in
chapter five). O

4.3 PER Model

In this section we briefly describe model of second order lambda calculus based on the
partial equivalence relation model of untyped lambda calculus.

Definition. A partial equivalence relation (per) on a set S is a symmetric and transitive
binary relation A on S. For a,b € S we write aAb to mean that a and b are related by the
per A.

Remark. The standard PER model of untyped lambda calculus works with pers on the
set N of natural numbers. We shall suppose that we have given some enumeration of

27

partial recursive functions from N to N and we shall write f,, for the n-th function in
this enumeration. Moreover we suppose that we have given a fixed recursive bijection
<,>: N xN—=N.

Definition. PER(N) is the following category: its objects are the pers on N. Given
A, B € PER(N), we say that a morphism from A to B is named by partial recursive
function f, if f,, induces a map of pers from A to B, that is whenever aAb (a,b € N) then
both f,,(a) and f, (b) are defined and f,(a)Bf,(b). Two functions f,, fn: A = B name the
same morphism if aAb implies f, (a)Bfmn (b). Morphisms in PER(IN) are those named by
some functions.

Theorem. (4.3) PER(N) is a cartesian closed category.

Proor. Product of pers A and B is a per A x B such that < a,b > (A x B) < ¢,d > iff
aAc and bBd. Exponent of A and B is the per A — B such that a(A — B)b iff f, and f;
name the same morphism from A to B. Terminal object in PER(IN) is the per Iper(n) with

one equivalence class. Clearly the given constructions form a cartesian closed structure on
N. O

Construction. Now we describe the PER model of second order lambda calculus using
the formalization from the previous section. The global category S has the natural numbers
as objects where 1 plays the role of . Morphisms of the global category from m to n are
functions Obj(PER(N))™ — Obj(PER(IN))"”. Note that in this category 0 is the terminal
object and product and exponent of m and n are given by

mxn=m-—n=m-+n.

The local category G(m) over m € N is then the (cartesian closed) category of functions
Obj(PER(N))™ — Obj(PER(N)) with products and exponents computed componentwise.
The value of the functor [, : G(m+ 1) = G(m) on any object F' € G(m+1) is a function
[L,.(F): Obj(PER(N))™ — Obj(PER(N)) given by

L, (F)(X1,...,Xmn) = N F(X1,...,Xm, A).
A€Obj(PER(N))
To every term H ¢ M : o where H = (21: 01,...,25: 0,) and ¥ = (a4, ..., &) We can

associate a term M~ of untyped lambda calculus simply by erasing the types from M. We
proceed by induction on the structure of M:

1) [#:]e is (the code of) the partial recursive function sy o WT_i where m, w5 are the
“projection” recursive functions of the pairing bijection <, >: N x N — N; that is
mi(< a,b>)=aand ma(<a,b>)=0b.

(2) [MNJe = fary. (INTe)-

(3) [Ax.M]eis (the code of) the partial recursive function g such that fy(q)(0) = frar. (<

a, b >).

28

A routine check tells us that the [M ~].~th partial recursive function fiar-7. names a mor-
phism from [[o1]ls X - -+ X [[on]s to [o]ls in the local category G(m). So [M ~Je will be the
interpretation of the term H . M : o . To verify that we have really got the interpretation
described in the previous section accounts to checking a few equations.

4.4 Functorial PER Model

In the area of computer science second order lambda calculus was proposed to serve as
a syntax for the notion of paramatric polymorphism. Intuitively, a parametric polymorphic
function is one that has a uniformly given algorithm for all types.

Example. Consider a function f which takes an argument of a type o and associates to
it an element of a type 7 (so that f is of a type ¢ — 7). For any type « let o-list be the
type of lists of elements of the type a and let L be a list of a type o-list. Consider now the
following function map: it applies f to the elements of I and then makes a list of results
— this is of a type r-list. Thus map has a type (¢ — 7) = (o-list = 7-list). Note that no
specific properties of types ¢ and 7 were used. This map is an example of a function given
uniformly for all types - parametric polymorphic function.

In the last few years a great attention was paid to the problem to find a semantic approx-
imation of this notion. A natural starting point is to interpret types as functors C™ — C
and terms as natural transformations between them, all defined over some cartesian closed
category C of closed types. The implication operator — then corresponds to the internal
hom functor =: CP x C — C. Unfortunately, this functor is contravariant in the first
argument and covariant in the second one and so

asf=so<af> C" 2 o e 2

is not a functor (where o, 5: C™ — C).

One solution of this problem is to work with pairs of morphism instead of simple ones
which serves to obliterate the difference between covariant and contravariant. This is the
way which used Girard in constructing his model and this approach we discuss in the next
chapter.

In [Bainbridge et al. 89] was proposed another method of solving the problem — not
to work with functors C™ — C but rather with functors (C°F)™ x C™ — C and in this
case the problem described above does not arise. Terms then are not natural but dinatural
transformations. These, unfortunately, are not in general composable and so 1t would not be
possible to substitute terms for the free variables in other terms. Neverthless it 1s possible
to find models based on this idea. In [Bainbridge et al. 89]is the idea applied to the PER
model and worked out in some detail. We give here just a brief description of the model
presented there, details and proofs of theorems can be found in the paper.

Definition. A dinatural transformation u between two functors F, G: (COF)™ x C™ — C
is a family of morphisms u = {ua: F(A, A) = G(A, A)|A € C™} such that, for any vector

29

of morphisms f: A — B,
F(A,A) —2 5 G(A,A)

F(f,idA)T lG(idA,f)
F(B,A) G(A,B)
F(idB,f)l TG(f,idA)
F(B,B) —— G(B,B)

commutes. We use notation u: F — G.

Remark. As we already mentioned, dinatural transformations do not compose in general.

Definition. Given two functors F,G: C™ x C™ — C. We define GI': (COP)m x C™ — C
(called twisted exponential) to be the functor

OoP
(COPym x cm =92 oP ¢ 2, .

Remark. Recall that ' x GG: (Cop)m x C™ — C was defined to be the functor

(COPym s cm 29 o X

We shall denote by I the subcategory of PER(N) whose objects are all pers on N but
whose only morphisms are those named by the identity function on IN.

Definition. A realizable functor F': PER(N) — PER(N) is one which takes I to I (setwise)
and for which there exists a mapping ¢ from the set of partial recursive functions to itself
such that, for any morpfism of pers from A to B named by function f, F(f) is named by

o(f)-

Remark. Realizable functors are closed under products, twisted exponentials and substi-
tution.

Definition. Let. F,G: (PER(N)°F)™ x PER(N)™ — PER(N) be realizable functors. A
family u = {ua: F(A,A) = G(A,A) | A € PER(N)} (not necessarily dinatural) is called
a realizable family if there is a single partial recursive function ¢ such that each morphism
up 1s denoted by ¢.

Theorem. (4.4) Realizable dinatural transformations compose.
Corollary. (4.5) For each m € N, the realizable functors (PER(N)°Y)™ x PER(N)™ —

PER(N) and the realizable dinatural transformations between them form a cartesian closed
category.

Definition. Given a realizable functor G: (PER(N)°FY)™ x PER(N)™ — PER(N), the
realizable end of G (denoted [, G(A,A) where A € PER(N)™) is a per £ € PER(N)

30

together with realizable dinatural transformation w: Kg - G universal for all such re-
alizable dinatural transformations (where Kp: (PER(N)°Y)™ x PER(N)™ — PER(N) is
the constant functor with value E). That is, for any D € PER(N) and for any realizable
dinatural transformation 3: Kp — G there is a unique realizable dinatural transformation
h: Ky = Kg such that

fa =waoha

for any A € PER(N)™.

Remarks.

(1) The given definition of a realizable end of a realizable functor is a special case of
more general definition of an end of a functor. Its special case for covariant functor
1s just the definition of a limit of a functor. The realizable end of a functor will
provide an interpretation of universal types.

(2) For G: (PER(N)°F)m+!l « PER(N)™*+! — PER(N), we write fQ G(—,Q,—,Q),
where @ € PER(N), for the functor (PER(N)°F)™ x PER(N)™ — PER(N) whose
value on (A, B), where A, B € PER(N)™, is the end fQ(A, Q,B, Q) of the functor

G(A,—,B,—): PER(N)°? x PER(N) — PER(N).

Theorem. (4.6) For any realizable functor GG: (PER(N)°F)™ x PER(N)™ — PER(N)
the realizable end [, G(A, A) exists.

Now we give a description of an interpretation of second order lambda calculus in the
terms of realizable functors and realizable dinatural transformations.

Definition. An interpretation o]y of a type o legal in the context ¥ = (aq,..., o) isa
realizable functor (PER(N)°F)™ x PER(N)™ — PER(N) given inductively as follows:

(1) [leis]s is the projection functor onto ith covariant argument, i.e. [o;]=(A,B) = B;.
(2) lo = s = [[7']]%01]E (twisted exponential).
(3) [Tev-7Is is the realizable functor given by

[Mo-15(A, B) = [,[7I5..(A, @, B, Q)
where () 1s any per.

Terms are interpreted in the same way as in the previous section. It is easy to verify that
[M~]. names a realizable dinatural transformation

M]e: ([oils x - - - x [on]s) = [ols: (PER(N)°P)™ x PER(N)™ — PER(N).

31

5 Scott Domains Model

In 1986 J. Y. Girard in his paper [Girard 86] used a new method for producing a model
of second order lambda calculus where types were interpreted as qualitative domains. Later
ideas presented in this paper were applied to other categories of domains, namely to the
category of dI-domains in [Coquand et al. 87], the category of complete algebraic lattices
in [Coquand and Ehrhard 87], the category of coherence spaces [Girard et al. 89] and
the category of Scott domains [Coquand et al. 89]. In this chapter we describe in detail
the probably most interesting model of these, the one based on Scott domains.

5.1 Scott Domains and Categories

In this section we review some basic definitions and results concerning Scott domains as
well as a few more notions of category theory. Proofs can be found in any paper concerning
Scott domains.

Definition. Let (D, <) be a partially ordered set. We say that

(1) (D, <) is directed if it is nonempty and, for any ¢,j € D, there is k € D such that
1t <kandj<k.

(2) (D, <) is complete (and we say that (D, <) is a cpo) if it has a least element L and
every directed subset M C D has a least upper bound \/ M.

(3) a point € D is finite if for every directed M C D such that # < \/ M there is
y € M such that x < y. Let Bp denote the set of finite elements of D.

(4) (D, <) is algebraic if, for every x € D, the set M = {#g € Bp | ¢ < 2} is directed
and z = \/ M.

(5) (D, <) is bounded complete if every bounded subset of D has a least upper bound.

Definition. A Scott domain is a bounded complete algebraic cpo.
Remark. The least upper bounds of finite sets of finite elements are finite, when they exist.

Definition. Let (D, <p), (¥,<g) be partially ordered sets. A function f: D — F is
monotonic if it preserves the order, that is <p y implies f(z) <g f(y).

A monotonic function f: D — E is continuous if f(\/ M) = \ f(M) for any directed
M CD.

Remark. Scott domains and continuous functions between them form an important carte-
sian closed category D. Product of two domains D and E is the domain D xp E of pairs of
elements (d, e) where d € D and e € F ordered coordinatewise with the obvious projections
fstp g and sndp g. Their exponent D —p £ is a domain consisting of the continuous

32

functions from D to F ordered pointwise, i.e.

f<g iff VdeD,f(d) < g(d).

Definition. A pair of continuous functions (f, g) where f: D — F and g: ' — D between
two cpos D and E is called embedding-projection pair if, for all d € D, go f(d) = d and, for
alle € B, fog(e) <e.

Remark. If h = (f,g) is an embedding-projection pair then f is called the embedding
(notation A = f) and g the projection (h® = g). As embedding-projection pair forms a
special case of adjoint functors (between two categories which are partially ordered sets) the
embedding determines its accompanying projection uniquely and vice versa. Scott domains
and embedding-projection pairs form a cartesian closed category DY The composition of
two embedding-projection pairs is defined in the obvious way: for h = ht AR) € DEP (D, E)
and k = (k& k®) € DEY(E F) we put
koh=(k¥ohl hR o k) e DEF(D, F).

The identity morphism of a domain D is the pair (idp,idp). The cartesian structure of
DPP is then given by the same constructions as in the category D.

Definition. A colimit < p; € DEP(D;, D) >;c; in DEF is directed if the indexing poset I
is directed. A category is directed complete if it has colimits of all directed families.

Remark. So a cpo is directed complete when regarded as a category.

Theorem. (5.1) The category DEF is directed complete. A cone < p; € D¥P(D;, D) >i¢s
is a directed colimit iff {p¥ o p | i € I} is directed in D —p D and

idp = \/{plopi* i1}

Theorem. (5.2) Let D be a domain. Then
{fYo f}| f € DEP(X, D) for some finite domain X}
is a directed subset of finite elements in D —p D and

idp = \/{fL o f*| f e D*P(X, D) for some finite domain X }.

Remark. From theorem (5.2) it follows that a domain is a colimit of the finite domains
which embed into it.

Lemma. (5.3) Let fo € D¥P (X, D) and f; € D¥P(X,, D), where Xy, X, are finite
domains. Then there is a finite domain X and g € DYV (X D) so that go = (gRof flogl) €
DY (X, X) and g1 = (¢® o f&, fRogl) € DEP(Xy, X) with fo = gogo and fi = gog.

33

Lemma. (5.4) Suppose < p; € DEP(DZ',D) >icr is a directed colimit in D¥Y. If X is a
finite domain and f € DEF (X D) then there is some i € I and h € DY (X, D;) such that

f=pioh.

Definition. A functor F': C' — C’ between directed complete categories is continuous if it
preserves directed colimits.

Remarks.

(1)

We define the following two continuous functors x, —: D¥F x DFF — DFP.
The product operator x is defined by

x(A,B) =Ax B

x(f,g) =fxg: AxA = BxB
where A, B € DEP | f € D¥P (A, B) and g € DEP (A, BY).
The function operator — is defined by
— (A, B)=A— B
—(f,9)=f—gcD* (A4 A BB
where
(f = 9)"(h) =g oho st

for h € D(A, A’) and

(f—)g)R(h/)IgROh/OfL

for ' € D(B, B').

In order to cope with the presence of free type variables it is convenient to define
generalizations of the product and function space functors. Given F,G: C — DFP
we define

F#G=xo(F xG)oA: C 2 CxC X% DFP DFP X pEP

F=G==0(F xG)oA:C 2 CxC X% DPP x DPP 2 DPP

where A is the diagonal functor. We can also define a multiary version of the #
by taking #() to be the functor into the trivial domain Ipsr and setting

#(Fla"'aFn-l-l):#(Fla"'aFn)#Fn+l~

Given functors Fy, ..., F, and 1 <7 < n we define

Py Fi(X) x - x Fo(X) = Fi(X)
to be the ith projection of the product Fy(X) x -+ x Fp(X).
In order to simplify notation we shall write FL(f) (resp. FR(f)) for (F(f))" (resp.

(F(f))®). To reduce the number of parentheses we shall also assume that association
is to the left so that expressions such as fzy or f(z)(y) represent an expression

(f(2)(y)-

34

5.2 Continuous Sections

Now we come to the central part of the model. In this section we describe a construction
which allows us to interpret universal abstraction. In [Coquand et al. 89] this is done in
more general way working with Grothendieck fibrations and their continuous sections. Since
it is not essential for understanding the model, we omit the general definition of Grothendieck
fibration and restrict ourselves to its special form in the category DFP.

Definition. Let F': C — DFPP be a continuous functor from a directed complete category
C. We define category [[F' of continuous sections of (the Grothendieck cofibration of) F
as follows:

(1) Objects of [T F are families < tx >xecc, where tx € F(X), satisfying the following
conditions:

(i) If f € C(X,Y) then
Fl(fHitx <ty (monotonicity).

(i) If < p; € C(X;, X) >¢1 is a directed colimit in C then

tx = \/ FL(pi)tXl (continuity).
i€l

(2) There is at most one morphism between two continuous sections ¢ and ¢’ — we write
this morphism as ¢t < t' and define

t<t iff VX eCix <ty.

Remark. Recalling Theorem (5.1) we can, for a functor F': DE¥ — DEP | rewrite the
condition (ii) as follows: If for a cone < p; € DEP(X;, X) >;c1 we have {pl o p |i € I} is
directed in X — X and \/iEI pr o plt = idy then tx = \/z’eI FY(p;)tx,. We shall later use
this form of the condition (i1).

Since our aim is to interpret closed types as domains and types with one free variable as
continuous functors F: DEF — DEF we need, in particular, [F to be one. Unfortunately,
it is not quite as its objects are not sets. But we can put the objects of [[F in 1-1 corre-
spondence with the elements of a suitable set. Take S to be some countable subcategory
of DEF equivalent to the full subcategory of all finite domains (with embedding-projection
pairs as morphisms). Any continuous section is determined by its restriction to the domains
of S. So in this sence [] F' is isomorphic to a partially ordered set and in fact, as we shall
see, to a domain.

Theorem. (5.5) Let F': DY — DEP be a continuous functor. Then the category [] F is
isomorphic to a Scott domain (regarded as a category).

Proor. Take Hs F to be the partial order consisting of monotonic families < tx >x¢s,
i.e. families satisfying condition (i). Clearly, [[g " is a set because S is. Now we show that
[IF and [[g F are isomorphic (as categories) and, later, that [[g F' is a domain.

35

Any continuous section ¢ € [[F' determines, by restriction, an element res ¢t € [[g F
Conversely, any ¢ € [[g I" can be extended to a continuous section ext ¢ € [] F' by taking

(ext t)p = \/{F(/)ix | X €S & fe D" (X, D)}

for any domain D. We must check that this is well defined.

First of all we check that the set \/{FY(f)tx | X € S & f € DEP(X, D)} is directed
(and so the least upper bound exists). For any two elements of this set yo = F(f5)tx, and
y1 = FY(f1)tx, arising from morphisms f; € D (X,, D) and f; € DEP (X, D), Xo, Xy
are finite, there is, by Lemma (5.3), a finite domain X and morphisms ¢ € DEP (X D), go €
DEP(X,, X), g1 € DEP (X}, X) such that fo = gogo and fi = gog;. t is monotonic and so
Yo = FY(gog0)tx, < FY(g)tx. Similarly y; < FL(g)tx and hence the set \/{F(f)tx | X €
S & f e DEP(X, D)} is directed and the definition above defines a family. It remains to
show that this family is monotonic and continuous. For any ¢ € DEY (D, F) we get

FY(g)(ext t)p @) \/{F " (ftx | X €S & fe D™ (X, D)}
_\/{FL oFY(fitx | X €S & feD"F(X, D)}
=\/{Ftgo fltx | X €S & fe D®(X, D)}

<\{F"(h)tx | X €S & he D™ (X £)}
= (ext t)g

This shows the monotonicity. Take a directed colimit < p; € DEP(DZ', D) >icr. We need to
show that
(ext t)p = \/{F"(pi)(ext t)p, | i € I}.
i€l

The set is directed because ext ¢ is monotonic. From monotonicity we also get

(ext t)p > \/{F"(pi)(ext t)p, | i € I}.
i€l
(ext t)p = V{FH(fitx | X € S & f € DEP(X,D)}. Take an element FY(F)tx of the
set on the right hand side. By Lemma (5.5), there is i € I and f € DEF(X, D) such that
f = pi oh. Now we have

FL(f)tX = FL(pZ' o h)tX

= Y (pi) (FY(R)tx)
< F(pi)(ext t)p,

It follows that the other inequality (ext t)p < \/{F"(p;)(ext t)p,
ext t is continuous.
It is easy to see that the two operations res : [[F — [[gF and ext : [[gF — [[F
preserve the order relation (and so are functors when the domains regarded as categories).
Take t € [[g#. Then, for Y € S, we have ty < (ext t)y — to see this , take in the
definition of ext ¢ f to be the identity on Y. From the monotonicity of T" we get

i € I} holds and hence

(res ext t)y = \/[{F'(f)ix | X €S & feD™P(X,V)} <ty

36

and hence res ext ¢ = ¢. Conversely, for ¢ € [F, we have (res t)x = tx for any X € S.
Then, from the definition of ext we obtain

(ext res t)p = \/{F"(f)ix | X €S & feD"’(X,D)}

for any domain D). But since ¢ is continuous and D is the directed colimit of finite embeddings
(see the remark following Theorem (5.2)), we also have

to = \/{F"(/)ix | X €S & fe D" (X, D)}.

Hence ext res t =¢. So res and ext form an isomorphism.
Now we proceed to show that [[gF is a domain. The least element is the family
<Llx>xes. Suppose {t'|i € I} is a directed subset of [[g F. Take t to be the family

defined by
tx = \/tk,
i€l

for X € S. The least upper bound on the right exists because the set {t% |i € I} is directed
in F(X). t is monotonic because, for f € DEF (X Y),

FE(f)tx = FL(f)(\/ th) = \/ FE(f)tx < \/té,

where we used the fact that F(f) is continuous. Hence ¢ is the least upper bound of the
set {t' |4 € I} and so [[g F' is complete. To show that it is bounded complete we proceed
similarly. Suppose {t’ | i € I} is bounded by s, i.e. ' < s for i € I and define ¢ by taking

tx = \/ tx.
i€l
Now the least upper bound exists because {t% |i € I} is bounded in F(X). It is again

monotonic — ' '
Fo(ix = FH(H(\ t) =\ FH(Nitx <\ 1,
sel iel iel

using the fact that embeddings preserve all existing upper bounds.
It remains to show that [[q F is algebraic. Suppose there is ¢ € [[g F such that tx =
e € F(X) is finite for some X € S. Define

Sey_\/{FL |f€DEP(X Y)}

for Y € S. This is well defined (¢y is a bound for the set on the right) that it is monotonic
and does not depend on the choice of ¢t. Consider a family

s=[X1,e1] V-V [Xp, en].

We show that s is a finite element of [[g F'. Suppose s <\/ M where M is directed subset
of [Ig F. Then, for any 1 <i <n, we get

37

ex; < sx, < (\/M)X = \/ mx,.
meM

As e; 1s finite, e; < mg(l for some m! € M. But then [X;, e;] < m'. Since M is directed,

there is m € M which dominates each m® for 1 < i < n and so s < m. Hence s is finite.
Any t € [[g F is easily seen to be the least upper bound of the directed set

{[X1,e1] V- V[Xn,en]ler <tx, & -+ & e, <tix,}

where the least upper bounds [X,e1]V -+ -V [X,,, e,] exist because they are bounded above.
Since in a domain least upper bouns of finite sets of finite elements are finite (when they
exist), it follows that any finite element of [[g /" must be of the form [X;,e1]V---V[X,, e,].
Hence []g F is algebraic and so a domain. O

Remarks.

(1) In the following we shall treat [7' as a domain. It would be possible to replace
everywhere [[F by [[g F provided above but this would only make the text even
more complicated.

(2) We will need to use [] operator with parameters. If F: (DEF)m+l — DEP i5 a
continuous functor, we shall write [[" F: (D¥F)™ — DEF for the continuous functor
defined as follows:

(IT" F)(4) = [T(F (A, -))
for A € (DEP)™. Given f € (D¥Y)™(A, B), we put

(IT" F)(f) € DEF(T™ 7)(A), (IT" F)(B))

by taking

(1" BY(f)(s)z = F"(f,idz)(sz7)

for each section s € ([[" F)(A) and ¢t € (([[™ F)(B). Checking that this is well
defined is a routine. Note that [[° F for F: DE? — DEP is [T F.

Now we introduce notation and results needed to provide a semantics of second order
lambda calculus which is done in the next section.

Lemma. (5.6) Suppose Fy, ..., F,: (DEF)™ — DEP are continuous functors. Then p" is
a continuous section of the functor #(Fy, ..., F,)=F;.

ProOF. For definition of p’” see the end of section 5.1. Suppose f € (D¥F)™(X,Y) and
(Z1,...,2n) € F1(X) X -+ X Fp(X). Recall that

F(FL, . F)=F)(X) = #(FL(X) % - x Fo(X)) —per Fi(X)

38

and so really pg’(n € (#(F, ..., Fy)=F;)(X). Then

(#(F, . F)=E)R(H V) (@1, w)
= (FR(f)opy" o #(Fy, .., F)“ () (@1, ..., 20)

= FMOER () (@)
— pg’(n(l‘l, cey l‘n)

and we get

F (. Fn)=F) ()Y), vn) |
= (#(Fr, . F)=F) (D (#(Fr - F)=F)Y A0y) (s)
<PV Wy Un)-

Hence p®" is monotonic and it is easy to see that it is continuous: Let f; € (D¥F)™ (X}, X),
for j € J such that {f]L o f]R} form a directed collection such that \/j f]L) f]R = idx. Then

\ @#(Fy - F)=F) () PR (21, 2n)

JjEJ

= \/(FZL(fJ) Op?(r; O#(Fl’ . "’FH)R(fj))(xl’ . "’$n)

JjEJ

=\ R ER) @)

= pg’(n(xl, nrg). O

Suppose P, F,G: (DEF)™ — DEF are continuous functors. Suppose also that s is a
continuous section of the functor P=(F=(G): (D¥F)™ — DEF and ¢ is a continuous section
of the functor P=F: (D¥F)™ — DEF. Then define a family apply(s,t) by

apply(s, 1) x (z) = (sx(2))(x (x)),

where X € (DEF)™ and z € P(X).
Lemma. (5.7) apply(s,t) is a continuous section of the functor P=-G: (D®F)™ — DEF.

Proor. To show that apply(s,t) is monotonic, suppose f € (DEF)™(X,Y). Then for

39
y € P(Y) we have

(P=G)"(f)(apply(s,t)x)(x)

(G™(f) o (apply(s,t)x) o P(f)
)((apply (s, t)x) (P™(f)(x)))
)((sx (PR()(2))) (tx (PR(£)(2))))
J(F=G) () (sy (@) (FR(f) (ty (2))))
)((GR(f) (sy (2)) o FH(£))(FR(f)(ty (2))))

)()
)

I VAN | VAN |
Q Q Q Q
ASAA

=~

A
mfl)
=
S
< =
w o~~~
"@L
O
=
=
i@
&R —
=

To show that apply(s,t) is continuous , suppose we have f; € (D¥F)™(X;, X) for i € I such
that {fF o fR} is directed in X —pee X and \/, f o fR =idx. Then for z € P(X)

\ (P=G)"(fi)(apply(s,1)x,) ()

7

= \/ GY(f) (s, (P (£) (2))) (L, (PR (£) (2)))
= \/ GY () (F=G)) (P=(F=G)(fi)(sx,)(x))

(FR(P=F)"(£i) (tx,) ()
= \/ G (F=G) (i) (sx () (F (fi) (tx ()

= \V(G"(fi) o G (f) (sx (@) (FE(fi) o FR(f:)) (tx ()

i

= apply(s, t)x(z). O

Suppose P,G: (DEF)™ — DEP p. (DEF)m+l — DEP are continuous functors and t
is a continuous section of the functor P=[[™ F: (D¥F)™ — DYP. We define a family

Apply(t,G) by
Apply(t, G)x(z) = tx(2)cx),

where z € P(X).

Lemma. (5.8) Apply(¢, () is a continuous section of the functor
P=(Fo < Id(perym,G >): (DPF)™ — DFF,

ProoF. In a similar way as in the proofs of the previous two lemmas we show that
Apply(t,) is indeed monotonic and continuous. O

Let P, F,G: (DEP)™ — DEP be continuous functors. Suppose ¢ is a continuous section
of the functor (P#F)=G: (D)™ — DEP. Take a family curry(t) defined by

curry(t)x (2)(y) = tx(z,y),

40

where z € P(X) and y € F(X).

Lemma. (5.9) curry(t) is a continuous section of the functor P=(F=(G): (DFF)" —
DFP.

PrOOF. In a similar way as the proof of Lemmma 5.7. O

Suppose P: (DEF)™ — DEF and F: (DEP)m+! — DEP are continuous functors. Let t
be a continuous section of the functor (P o Fst(perym per)=>F" (DEPym+L 5 DEP - Let
X € (DEYY™ and z € P(X). We define Curry(t)x(z) to be the continuous section of
F(X,-): DE? — DPP given by the equation

Curry(t)x(z)z = t(x,z)(x),

where Z € DEP,

Lemma. (5.10) Curry(t) is a continuous section of the functor P=[[" F: (DEF)™ —
DFP,

ProOOF. Similar as the proof of Lemmma 5.7. O

Suppose P, F,G: (DEF)™ — DEF are continuous functors and suppose we have given s
to be a continuous section of (P#F)=G and t to be a continuous section of P=F. Then
we define a continuous section [t]s of P=F by

([t]s)x (x) = apply(curry(s),t)(z) = sx (=, tx(x)),
where z € P(X).

Lemma. (5.11)

(1) Taket,s,t',s" to be continuous sections of functors P=F, ((P#F)#F)=G,
((PH#F)#F)=G and ((P#F)=F, respectively. If t's (p,b) = tx(p) and s’ (p, b, a)
= sx(p,a,b) for every X, p,a and b, then curry([t'],s") = [t](curry(s)).

[= tx, then Curry(|t'|s) = [{|(Curry(s where t,s,1" are continuous
2) If 1] 1, hen C ’ C h ’ '
sections of appropriate functors).

(3) apply([t]r, [t]s) = [i](apply(r, 5)).

(4) Apply([t]s, G) = [t](Apply(s, G)).

ProoF.

(1)

([t']s")x (p,0)

s (p, b, U'x (p, 1))

= sx (p, tx(p), b)
curry(z)x (p,tx (p))(b)

([t(curry(s)))x (p) (D).

curry([t']s") x (p)(b)

41

Curry([t']s)x (2)y = s(x,v)(=, t(xy)(x))
sx,y) (2, tx (2))y
[t](Curry(s))x (2)y.

apply([t]r, [t]s)x (z) = ([t]rx (z))([t]sx (2))
= (rx(z, tx(2)))(sx (z,tx(x)))
= apply(r, s)x (v, tx (7))
= [t](apply(r, 5))x ().

Apply([t]s, G)x (x) = ([t]s)x (¢)a(x)
=sx(x,tx(x))ax)
= Apply(s, G)x (v, tx(v))
= [t](Apply(s,G))x (x). O

Suppose that P, K: (D¥F)™ — DEP and F: (DEP)™+! — DEP are continuous functors
and that ¢ is a continuous section of (P o Fst(perym per)=>F). We define a continuous
section [Kt of P=>(Fo < Id(perym, G >) by

([K]t)x (x) = Apply(Curry(t), K)x (z) = t(x q(x)(®).

Lemma. (5.12)

(1) curry([K]t) = [K](curry(?)).
I (x,2v) = t(x,v,z) foreach X, Y and Z, then Curry([KoFst]t') = [K](Curry(?)).

(2)
(3) aPPIY([f\] [K]t) = [K](apply(s, 1)).
(4) Apply([[x]t Ho < Id, K >) = [K](Apply(t, H)).

ProoF.

(1)

curry([K]t)x (z)(y) = ([K]t)x (2,)
=txr(x) (2, 9)

= curry(t) x,k(x)) () (y)

= [K])(curry (1)) x () (y).

42

Curry([K o Fst]t)x (x)z = Curry([K o Fst]t')x z)

= t/(X,Z,G(X))(x)
=tx,ax),2)(%)z

= Curry(t)(x,cx) (*)z
= [K)(Curry(t)x (2)7.

apply ([K]s, [K]t)x (x) = (([K]) () ([K]t) x (2))
= (s(x,k (x)) (#) (E(x,x (x)) (%))
=

=

app13’(8 1) (x,x(x)) ()
K](apply(s,t))x ().

Apply([K]t, Ho < Id, K >) = ([K]t)x (%) gr(x,K (x))
= tx g (x)) (#)m(x K (X))
= Apply(t, H)(x,x(x) (%)
= [K](Apply(t, H))x (z). O

5.3 Semantics

Now we finally describe the semantics for second order lambda calculus in this model. As
we already mentioned, types are interpreted as functors from (D¥F)™ to DEF.

Definition.

(1) Aninterpretation [[o]x of a type ¢ legal in a context ¥ = (a1, ..., ay,) is a continuous
functor (DEF)™ — DEP defined inductively as follows:
(1) [[ai]]E = PZ(i:TEP)m
(it) [o = 7]s = [olls=[r]x
(it) Mol = 1" (ols).
(2) A type assignment H = (21: 01,...,&n: 0,) legal in a context ¥ = (o, ...,) is
interpreted by the functor [H]s = #([o1ls, - - -, [onls)-
(3) An interpretation [M]s.m of the term H Fy M : ¢ is a continuous section of the
functor [H]s=[e]s: (DEY)™ — DEF. Tt is defined inductively as follows:

(i) [xilom =p™"

(1) [Az: 7. M]s.g = curry([MsHz: +)
(iii) [Ae.M]s.g = Curry([M]s o.8)

(iv) [M(N)]sm = apply([N]sa, [M]s;a)
(v) [M{7}]s;z = Apply([M]s;m, [7]s).

43

Remark. A detailed inspection shows that these definitions really make sence, the only
problem is the case (iv). This is dealt with in the following lemma.

Lemma. (5.13) If o does not appear free in the type o, then

[[0']]270(= [[0']]2 o] FSt(DEP)myDEP.

Proo¥. By straightforward induction on o.

[[Ozi]]gyo(= Pi’m-l_1 = [[Ozi]]g o FSt(DEP)myDEP.

lo = mls,a = [ols,a=[7]5 o
= ([[0’]]2 o FSt(DEP)myDEP)i([[T]]E o FSt(DEP)myDEP)
= ([[UHE:>[[T]]E) o FSt(DEP)myDEP
= [[0' — T]]E [e} FSt(DEP)myDEP

[T18-0]5,«(X,Y) = 1" [0]5,a,6(X,Y)

[ols,a8(X, Y, =)

[ols5,a(X, = Y)

lells g0 Fstperymt1, per(X,—,Y))
[ols,5(X,)

=[1"([o]s,p)(X)

=[1(lels,p) o FSt(DEP)myDEP(X, Y)
=[ollsseo Fstperym per (X,Y),

IT(
IT(
IT(
IT(

where the fourth line follows, for 8 # «, from the induction hypothesis and, for 5 = «, from
the fact that

[[U]]E,oc,oc = [[0']]270([} FSt(DEP)myDEP. O

Example. The interpretation of the type [[o.ae — o is

[Mle-a — o] = [T°([a — o)
= [I(Ielo=la])
— H(P1’1:>P1’1).
The polymorphic identity function is interpreted by the following continuous section of
[T(PYHi=Phl):
[Aadz: a.z] = Curry([Az: a.z])
= Curry(curry([z]as: o))
= Curry(curry(p'')).

44

Definition. We say that equation H F, M = N: ¢ is satisfied under the given semantics if
Mgz = [Ns:n.

We now proceed to prove Soundness theorem. First we need some lemmas.

Lemma. (5.14) Given permutations {1,...,n} = {i1,...,iy | and
{1,...,m} ={j1,...,jm}. Then
[[M]]ocl,...,ocm;xlz O1, . Tn O (Xl,...,Xm)(pla s apn) =

— [[M]]ocjl,...,ocjm iyt Tig e Tip t Tip (le,...,ij)(piu cee apin)~

Proor. By structural induction on M. O
Lemma. (5.15) Suppose H =, M, : 0y and H,x: 01 =5 Ms: 05. Then

apply(curry([Mo]s.vo: 00), [Milsin) = [[M1/2]Ms]s m.

ProoF. Let r = [[Mi/e]Ms]ls.m, s = [Malls.ve: 0, and t = [Mi]ls.nx. We want to show
that » = [t]s. We shall do it by structural induction on Ms.

(1) My =x. Then r =t and [t]s = [t](p"TP"F) = ¢, so r = [t]s.

(2) My = ;. Then r = [#]s.5 = p" = [t](ptntt) =t

(3) My = Ay: o.M. Suppose that 0y = ¢ — 7 so that H,y: o b, M : 7. Then

r=[Ay: o.[Mi/2)M]s.H

= curry([[M1/2]M 5.8y o)
=curry([[Mills:my: o) IMIsHy: 00 01) (hyp)
t(curry(IMsHe: o1,y: o)) (Lemmas 5.11.1 and 5.14)
= [t]s.

(4) M> = Aa.M. Suppose that oy = [[ov.o so that H b M : 0. Then

r = [Aa.[Mq/2)M]s.H
= Curry([[M:/2]M]ls,0;1)
= Curry([[Mi]s a;u][M]s ;82 0.) (hyD)
= [t](Curry([M]s,aHz: 01)) (Lemmas 5.11.2 and 5.14)
= [t]s.
() My = M(N). Suppose that H =, M : 0 — ¢ and H =, N: 0. Then

r = [([My/=]M)([M1/x]N)]ca

apply([[M:1/x]M]s;m, [[M1/]N]s;u)

apply([{][M]sme: o0, [tlIN]siHe: 1) (hyp)
t(apply([Ms:f0: o1s [N]S:He: 01)) (Lemma 5.11.3)
= [t]s.

45
(6) My = MA{o}. Suppose H b, M : 7. Then

r=[([M1/z]M){o}] s
= Apply([[M:1/z]M]s;u, [o]s)
= Apply([t]IM]s:b,0: 0., [0]s) (hyp)
= [t](Apply(IM]smz: 00, [o]s) (Lemma 5.11.4)
=[t]s. O

Lemma. (5.16) [[[o2/a]o1]s = [01] 5,00 < Id(peeym, [o2]ls >.
Proor. By structural induction on ¢y. O

Lemma. (5.17) Suppose H b5 M : o1 and o does not appear free in type of variable in
H. Then

Apply(Curry([M]s onm)[oa]s) = [[oa/a]M]s .

ProoF. Let s = [[oo/a]|M]s.a, t = [M]s o.x and K = [o2]x. By structural induction on
M we show that s = [K]t.

(1) M = z;. Then [¢/a]o; = o1, and so s = [&;]s.x = p*" = [K](p*"H) = [K]t.
(2) M = Ay: o.N. Suppose that o1 = ¢ — 7 so that H by o Vi 7. Then

s =[Ay: [o2/alo.[o2/a]N]s.H
= curry([[o2/]N]s:Hy: [02/0]0)
= curry([K][N]s,aimry: o) (hyp)
= [K](curry([N]s,a:H,y: o)) (Lemma 5.12.1)
= [K]t.

(3) M = AB.N. Suppose that oy = [[F.0 so that H bs oV 0. Then

s = [AB.lo2/a]N]s.H
= Curry([loa/a]N]s 5.1)
= Curry([K o Fst(perym pee|[N]s g,0;1) (hyp)
= [K](Curry([N]s s.#)) (Lemmas 5.12.2 and 5.14)
= [K]t.

(4) M = Ny(N3). Suppose that H b, N1: 0 — o1 so that H b No: 0. Then

s = [([o2/a]N1)([o2/ o] N2)] 51
= apply([[oo/] N1]z;m, [lo2/a] No]sm)
= apply([K][Nis,a;a, [K][Ne]ls,o;m) (hyp)
= [K)(apply([Ni]s a1, [No]5,0:8)) (Lemma 5.12.3)
= [K]t.

46

(5) M = N{s}. Suppose that o1 = [o/a1]T so that H by , N2 [[ai.7. Then

s = [([o2/] N){[o2/]} sH
= Apply([loz/a]N]s;n, [lo2/a]o]s)
= Apply([K][N]s 0., [[o2/@]o]s) (hyp)
= Apply([K][N]s, o1, [0]lz,00 < Id(pErym, K >)) (Lemma 5.16)
= [K](Apply([N]s «:#, [o]x) (Lemma 5.12.4)
=[K]t. O

Lemma. (5.18) Suppose H b M : 01 — 03. If 2 does not appear in H, then

Mlsme: o = [M]smofstn .

Proor. By structural induction on M. O

Lemma. (5.19) Suppose H b, M : ¢. If o does not belong to ¥, then

[[M]]EVQ;H = [[M]]E;H [} FSt(DEP)myDEP.

Proor. By structural induction on M. O
Now we finally can prove the Soundness theorem:

Theorem. (5.20) (Soundness) Equational rules for second order lambda calculus are
satisfied under the given interpretation.

ProoF. Although there are eleven rules; the proofs of most of them are immediate. The
only non-trivial proofs are those of the rules 3, type 8, 5 and type 5.

(1) B rule:
HzrogbM:ioy HRN:og
Hbg(Ax: o . M)(N) =[N/z]M: o9

This rule immediately follows from the lemma 5.15.
(2) type S rule:
Hb, M:oy

H kg (Aa.M){o2} = [o2/a]M : [05]/a]oy

This rule immediately follows from the lemma 5.17.
(3) nrule:
HeM:0y — 03
HEXe:op. M(z)=M: 01 = 09

47

where we have a restriction that & does not appear in H. We have

[Az:o1.M(2)]s;m = curry([M (2)]s;m,0: o)

= CUI‘I‘Y(aPPIY([[M]]E;H,x: o1 Sndn,l))
= curry(apply([M]s.q o fst, 1,snd, 1)) (Lemma 5.18)
= [[M]]E;H

(4) type 7 rule:

HFM: Jlac
Hb Ao M{at=M: [Jac

where « does not appear in .. Then

[[AO[.M{O[}]]E;H

= Curry([M{e}]x,un)

= Curry(Apply([M]s o.a, [2]5 o))

= Curry(Apply([M]s;u o Fstperym per, Snd(perym per)) (Lemma 5.19)
=[M]sm O

Remarks.

(1)

We have presented the model in a way which slightly differs from the general defini-
tion of a model given in section 4.2. If we want to present the model in the Seely’s
formalization, we could proceed as follows. For the category S we take the category
of locally finitely presentable categories (actually it would be enough to take the
category based on the natural numbers which we used in section 4.3). This is carte-
sian closed. Moreover the functors from one locally finitely presentable category to
another (defined up to isomorphism) form a set (and a cartesian closed category).
The rest of the construction is the construction given in this chapter.

For the construction was essential the fact that any Scott domain is a directed
colimit of finite domains which embed into it - this follows from the fact that it is
algebraic. We also, of course, need the domain to be a cpo. So the only feature of
a Scott domain we didn’t need is bounded completeness (and it is really possible to
perform this construction in the category of algebraic cpos).

48

REFERENCES

[Asperti and Longo 91] A. Asperti, G. Longo, Categories, types, and structures:
an introduction to category theory for the working computer scientist, The
MIT Press, Cambridge, Massachusetts, 1991.

[Bainbridge et al. 90] E. S. Bainbridge, P. J. Freyd, A. Scedrov, P. J. Scott,
Functorial polymorphism, Theoret. Comput. Sci. 70 (1990), 35-64.

[Bruce et al. 90] K. B. Bruce, A. R. Meyer, J. C. Mitchell, The semantics of
second-order lambda calculus, Inform. and Comput. 85 (1990), 76-134.

[Coquand 89] T. Coquand, Categories of embeddings, Theoret. Comput. Sci. 68
(1989), 221-237.

[Coquand and Ehrhard 87] T. Coquand, T. Ehrhard, An equational presentation
of higher-order logic, Category Theory and Computer Science, LNCS 283,
Springer-Verlag, Berlin, 1987, 40-56.

[Coquand te al. 87] T. Coquand, C. Gunter, G. Winskel, dI-domains as a model of
polymorphism, Proceedings, Third Workshop on the Mathematical Foun-

dations of Programming Language Semantics, LNCS 298, Springer-Verlag,
New York, 1987.

[Coquand te al. 89] T. Coquand, C. Gunter, G. Winskel, Domain theoretic
models, Inform. and Comput. 81 (1989), 123-167.

[Fortune et al. 83] S. Fortune, D. Leivant, M. O’Donnell, The expressiveness of
stmple and secodn-order type structures, Journal Assoc. Comp. Mach. 30

(1983), 151-185.

[Girard 86] J. Y. Girard, The system F of variable types, fifteen years later, The-
oret. Comput. Sci. 45 (1986), 159-192.

[Girard et al. 89] J. Y. Girard, P. Taylor, Y. Lafont, Proofs and Types, Cambridge
University Press, Cambridge, 1989.

[Lambek and Scott 86] J. Lambek, P. J. Scott, Iniroduction to higher order
categorical logic, Cambridge University Press, Cambridge, 1986.

[Lawvere 69] F. W. Lawvere, Adjointness in foundations, Dialectica 23 (1969),
281-296.

[McCracken 79] N. McCracken, An investigation of a programming language with
a polymorphic type structure, PhD thesis, Syracuse University, 1979.

[Pitts 87] A. M. Pitts, Polymorphism is sel theoretic, constructively, Category
Theory and Computer Science;, LNCS 283, Springer-Verlag, Berlin, 1987,
12-39.

[Reynolds 84] J. C. Reynolds, Polymorphism is not set-theoretic, Semantics of
Data Types, LNCS 173, Springer-Verlag, New York, 1984.

[Robinson 91] E. Robinson, Notes on the second-order lambda calculus, Notes for
a logic for I'T weekend course, Leeds, 1991.

[Seely 87] R. A. G. Seely, Categorical semantics for higher order polymorphic
lambda calculus, Journal Symb. Logic 52 (1987), 969-989.

