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Introduction

In the following I attempted to give an account of some parts of semantics of typed
lambda calculi. The work is divided into two parts. In the �rst part I brie
y study syntax
and categorical semantics of simply typed lambda calculus. In the second part I then
concentrate on second order lambda calculus. In chapter 3 I give a de�nition of second
order lambda calculus and discuss some aspects of its syntax. In chapter 4 I give a general
de�nition of a model of second order lambda calculus and brie
y describe two concrete
models. In the �fth chapter I give a detailed description of an important model of second
order lambda calculus based on Scott domains.

My main goal was to describe ideas which led to the de�nition of second order lambda cal-
culus and to present several di�erent approaches to modelling second order lambda calculus.
I paid special attention to showing some connections between these approaches.

The work was derived from the papers cited in References. Sometimes, when I thought
it useful, I supplied some details, proofs and examples.

This paper was written during my stay at Brno University as a part of my Mgr. course
in discrete mathematics. I would like to thank prof. J. Rosick�y for supervising my study at
that time.
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0 Categories

Before we start, it will be better to review some necessary notions from category theory,
mainly in order to standartize notation.

De�nition. Let C be a category, A;B 2 C. The product of A and B is an object A�C B
(where the index is clear from context we will omit it) together with projections

fstA;B : A�B ! A

sndA;B : A�B ! B

such that, for any C 2 C and any pair of morphisms f : C ! A and g : C ! B, there is a
unique morphism h : C ! A� B such that

fst � h = f

snd � h = g:

Remark. Given morphisms f : A1 ! A2, g : B1 ! B2 such that A1 � B1 and A2 � B2

exist. Then f � g denotes the uniquely determined morphism from A1 � B1 to A2 � B2

which makes the following diagram commute

A1
f

����! A2

fst

x??
x??fst

A1 � B1
f�g
����! A2 � B2

snd

??y
??ysnd

B1 ����!
g

B2

:

De�nition. A cartesian closed category C is a category satisfying the following:

(1) There is a terminal object 1C.
(2) For each pair of objects A and B of C there is a product A �C B with projections

fstA;B : A �C B ! A and sndA;B : A �C B ! B.
(3) For each pair of objects A and B of C there is an exponent A!C B together with

morphism eval: (A!C B)�CA! B such that, for any morphism f : C�CA! B,
there is a morphism �f : C ! (A!C B) such that

eval � (�f � idA) = f:
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Remarks.

(1) We can look at � as an operation � : HomC(C �C A;B) ! HomC(C;A !S B) (it

would be more correct to write �A;B
C

but we will omit the indexes where possible)
which is an isomorphism natural in C.

(2) An important point is that we have a given terminal object, product and exponent
for every pair of objects. There are two slightly di�erent notions of a functor pre-
serving the cartesian structure. If functor F : C ! C0 preserves terminal objects,
binary products and exponents (i.e. the image of a terminal object in C is a terminal
object in C0 and whenever we have a product diagram

A
p

 ���� P
q

����! B

in the category C, the diagram

F (A)
F (p)
 ���� F (P )

F (q)
����! F (B)

is a product diagram in C0, similarly for exponents) we say that F preserves the
cartesian closed structure. If moreover the image of the given terminal object 1C
in C is the given 1C0 in C0, F (A �C B) = F (A) �C0 F (B) and F (A !C B) =
F (A)!C0 F (B) then we say that F preserves the cartesian closed structure on the
nose (sometimes we say that F is strict).

(3) Sometimes the exponent is de�ned by means of right adjoints to the functors (�)�C
A : C! C for every A 2 C. Indeed from our de�nition it follows that in a cartesian
closed category this functor has a right adjoint (usually denoted (�)A : C! C such
that (B)A = A!C B.

De�nition. Given two categories C and C0. The product category C�C0 is de�ned to be
the category which has as objects pairs (A;A0) where A 2 C and A0 2 C0. The morphisms
are pairs (f; g) : (a; a0)! (B;B0) where f : A! B and g : A0 ! B0.

Remarks.

(1) We have also projections

FstC;C0 : C �C0 ! C

SndC;C0 : C �C0 ! C0:

(Usually we will write Fst and Snd for projection functors and fst and snd for
projection morphisms inside a category).

(2) For 1 � i � m, we put Pi;m
C1;:::;Cn

: C1 � � � � �Cm ! Ci to be the ith projection.

(3) Given functors F : C ! C1 and G : C ! C2, < F;G > is then the unique functor
from C to C1 �C2 such that Fst� < F;G >= F and Snd�< F;G >= G.

(4) If F : C!D and G : C0 !D0 are functors then we de�ne

F �G =< F � Fst; G � Snd > : C �C0 !D�D0:

(5) We sometimes write 1 for the category with one object and one arrow (i.e. for the
terminal object in the category Cat { the category of small categories and functors
between them).
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De�nition. Let C and D be categories. An adjunction fromD to C is a triple < F;G; ' >
such that

(1) F : D! C and G : C!D are functors (F is called left adjoint of G and G is called
right adjoint of F ).

(2) ' : HomC(F�;�) �= HomD(�; G�) is a natural isomorphism of hom functors.

Remarks.

(1) So ' is a family of mappings indexed by pairs (D;C) where D 2 D and C 2 C
such that 'D;C : HomC(F (D); C) ! HomD(D;G(C)) is isomorphism. Moreover,
this isomorphism is natural in D and C, that is, for any f : F (D)! C, k : C ! C0

and h : D0 ! D, we have

'D;C0(k � f) = G(k) � 'D;C(f)

'D0;C(f � F (h)) = 'D;C(f) � h:

(2) The natural transformation � : IdD ! G � F de�ned by

�D = 'D;F (D)(idF (D)) : D ! G(F (D))

for D 2 D is called the unit of the adjunction and the natural transformation
� : F �G! IdC de�ned by

�C = '�1G(C);C(idG(C) : F (G(C))! C

for C 2 C is called the counit of the adjunction.
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PART I.

Simply Typed Lambda Calculus

A simply typed lambda calculus is at the basis of all typed systems. Introduced by
Church in 1940 as an attempt to avoid Russell's paradox, it has become one of the most
important concepts in theoretical computer science as well as in logic. In this part we give
a de�nition of a simply typed lambda calculus, discuss brie
y its syntax and categorical
semantics. I concentrated in this part on describing those features which help to understand
the discussion about second order lambda calculus studied in part II.

1. Syntax

First we de�ne what the terms and the types of a simply typed lambda calculus are.

De�nition. The types of a simply typed lambda calculus (over a ground set At) are given
inductively as follows:

(1) every member of At is a type.
(2) If � and � are types, then � ! � and � � � are types.

Remarks.

(1) We shall use small greek letters to denote types.
(2) The intuitive meaning of operators ! and � is clear: � ! � denotes the function

type and � � � the product type.
(3) Some authors mean by simply typed lambda calculus a typed system without the

product operator. A typed system with types given as above is then called a simply
typed lambda calculus with explicit pairs.

De�nition. The terms of a simply typed lambda calculus are those that can be generated
by the following clauses:

(1) for every type �, there is a countable set fx1; x2; : : :g variables of type �. We shall
write x : �.

(2) if x : � is a variable and M : � is a term, then �x : �:M is a term of type � ! � . We
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say that x is bounded in �x : �:M .
(3) if M : � ! � and N : � are terms, then M (N ) is a term of type � .
(4) if M : � and N : � are terms, then < M;N > is a term of type � � � .
(5) ifM : ��� is a term, then fst(M ) and snd(M ) are terms of types � and � respectively.

Now we proceed to de�ne the equational theory of simply typed lambda calculus.

De�nition. The equational theory of simply typed lambda calculus is de�ned to be the
minimal congruence relation "=" satisfying the following axiom schemas:

� : �x : �:M = �y : �:[y=x]M

! � : (�x : �:M )N = [N=x]M

! � : �x : �:(Mx) =M

��1 : fst(< M;N >) =M

��2 : snd(< M;N >) =M

�� : < fst(M ); snd(M ) >= M

where the types of the terms are such that the terms are correctly formed. Moreover, in the
� rule y is not free in M and in the ! � rule x is not free in M .

Remark. Instead of working with equations between terms we could de�ne the notion
of reduction. The previous equations then would become rewriting rules. The immediate
reductions are

! � : (�x : �:M )N ,! [N=x]M

! � : �x : �:(Mx) ,!M

��1 : fst(< M;N >) ,!M

��2 : snd(< M;N >) ,!M

�� : < fst(M ); snd(M ) >,!M

(again in the ! � rule x is not free in M ). We then de�ne the reduction to be the smallest
transitive relation containing ,! and compatible with the formation of terms. We write
M ,!�N whenM reduces to N . We say that a termM is normal if no immediate reduction
can be applied on any of its subterms. A term M is strongly normalisable when there is no
in�nite reduction sequence starting with M .

Theorem. (1.1) All terms of a simply typed lambda calculus are strongly normalisable
and the normal form is unique.

Proof. Can be found in [Girard et al. 89]. �

Remark. The type theory presented here has its logical counterpart. The types can be
regarded as formulas of (intuitionistic) �rst-order propositional logic (based on connectives
^ and )). The terms then denote deductions of their types, under hypotheses which
are the types of their free variables. The reduction rules correspond to the eliminations
of unnecessary "detours" in the deductions. This correspondence between deductions in
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natural deduction and terms of simply typed lambda calculus is known as the Curry-Howard
"formulae-as-types" isomorphism.

The question which now comes to mind is what the expressive power of this system is.
For example, is it possible to interpret in this system the type of integers, and if it is so,
what functions between integers can be expressed? Before we answer this questions, we
state the following lemma.

Lemma. (1.2) The only normal terms of type � ! � and � � � are of the forms �x : �:N
and < N1; N2 > respectively.

Proof. We prove both parts of the lemma simultaneously by induction on the structure of
term M . There are �ve cases.

(1) M � �x : �1:M1.
(i) Suppose that M is a normal term of type � ! � . It follows that �1 = � and

M is of the required form.
(ii) The case that M is a normal term of type �� � is immediately ruled out since

the types are incompatible.
(2) M �M1(M2).

(i) M of type � ! � . Then M1 must have type �1 ! (� ! � ) for some type �1.
By induction hypothesis M1 = �x1 : �1:M

0

1 and so M1(M2) is not a normal
term.

(ii) M of type � � � . Then M1 must have type �1 ! (� � � ). Again by induction
hypothesis, M1 = �x1 : �1:M 0

1 and so M1(M2) is not a normal term.
(3) M �< M1;M2 >.

(i) M of type � ! � . This cannot happen since the types are incompatible.
(ii) M of type � � � . It follows that �1 = � and so M is of the required form.

(4) M � fst(M1).
(i) Then M1 must have type (� ! � )� �1 and again by the induction hypothesis

the term fst(M1) is not normal.
(ii) Then M1 is of the type (� � � )� �1. By the induction hypotheses M is not a

normal term.
(5) M � snd(M1). The same argument as in the previous case applies. �

One way to represent integers in simply typed lambda calculus is to represent them as
the closed normal terms of type

Int� = (� ! �)! (�! �)

where � is a type. Term

n� = �y : � ! �:�x : �: y(y : : : (y| {z }
n times

(x)) : : : )

then represents the natural number n. We'll show that this representation is, at least to
some extent, satisfactory.

Lemma. (1.3) Terms n� for some n 2 N and the identity term �y : � ! �:y are the only
closed normal terms of type Int�.
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Proof. Take M to be a closed normal term of type Int�. From lemma 1.2 it follows that
M is of the form �y : � ! �:M1, where M1 is a normal term of type � ! �. M1 is either a
variable (y and M is then the identity term) or is of the form �x : �:N , where N is a normal
term of type � (extension of the argument in lemma 1.2). Now N is either a variable (and
so x) or of the form N1(N2) (the other cases are immediately ruled out). N1 is a normal
term of type � ! �. But since N is normal, N1 cannot be of the form �z : �:N 0

1 and so N1

has to be a variable, and hence N1 is x (and � = �). N2 is a normal term of type �, so it
is again either x or y applied to an expression of type �. It follows that N is of the form
y(y : : : (y(x)) : : : ) and so M is of the form n� for some n 2N. �

So it is possible to represent integers but what about functions on them? Given a closed
term f of type Int� ! Int� , it induces a function jf j from N to N de�ned as follows

jf j(n) = m i� f(n) ,!�m:

Since the normal form of every term exists and is unique, function jf j is well de�ned and
total.

Theorem. (1.4) The functions fromN toN representable in simply typed lambda calculus
are those that can be generated from constants 0 and 1 using the operations addition,
multiplication and conditional.

Proof. Can be found in [Fortune et al. 83]. �

So we can see that the class of representable functions is not very big - we can represent
only polynomials extended with the conditional function. So for a real work it is necessary
to create richer typed systems - either by adding new constants and conversion rules (this
is the case of G�odel's system T) or by allowing to perform more powerful operations on
types. One of the typed systems we can get using the latter method is second order lambda
calculus which we will study in Part II.
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2 Categorical Semantics

The main idea of categorical semantics of a simply typed lambda calculus is to interpret
types as objects and terms as morphisms in some category C. It isn't too di�cult to see
an analogy between the axioms of a simply typed lambda calculus and the axioms of a
cartesian closed category. When we regard (a type) A � B as the categorical product of
(types) A and B, then < ; > is the product morphism and fst( ) and snd( ) are the �rst
and second projection respectively (application of terms now corresponds to composition
of morphisms). The ��1, ��2 and �� are precisely the axioms de�ning a product in a
cartesian closed category. A little bit trickier situation arises in the case of exponents - here
we have to deal with the notion of substituion of a term for a free variable - something
which doesn't have an immediate analogy in a category theory. But this problem can be
overcome. Let's look a bit closer at our idea. What role do free variables play? A term
M : �, whose free variables are among x1 : �1; : : : ; xn : �n, is to be interpreted as a morphism
from � = �1 � � � � � �n to �. Now if we have two terms M : � and N : � such that free
variables of [N=x]M are among x1 : �1; : : : ; xn : �n, the substitution of N in M is modellled
by composing M with < id�; N >

�1 � � � � � �n
<id�;N>
������! (�1 � � � � � �n)� �

M
����! �:

The morphism we have got really has the required domain and codomain. The ! � and
! � rules are satis�ed.

Before we summarize the previous discussion in a formal de�nition, we de�ne the notion
of a context.

De�nition. A context H is a (possibly empty) list of variables, H = (x1 : �1; : : : ; xn : �n).
A term M : � is said to be legal in a context H (we shall write H `M : �) if every free
variable of M is in H. We shall write H;x : � for a context x1 : �1; : : : ; xn : �n; x : �.

De�nition. Let C be a cartesian closed category and I a map assigning to each atomic
type an object of C. Then the interpretation of simply typed lambda calculus in C is given
as follows:

(1) A type � is interpreted by object [[�]] of C de�ned as follows:
(i) [[�]] = I(�) for an atomic type �.
(ii) [[�! � ]] = [[�]]!C [[� ]]
(iii) [[�� � ]] = [[�]]�C [[� ]]

(2) A term M : � legal in a context H = (x1 : �1; : : : ; xn : �n) is interpreted by a mor-
phism

[[M ]]H : [[�1]]�C � � � �C [[�n]]! [[�]]

in C de�ned inductively as follows:
(i) [[xi]]H = snd � fstn�i

(ii) [[�x : �:M ]]H = �([[M ]]H;x:�)
(iii) [[M (N )]]H = eval� < [[M ]]H; [[N ]]H >
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(iv) [[<M;N >]]H =< [[M ]]H; [[N ]]H >
(v) [[fst(M )]]H = fst � [[M ]]H
(vi) [[snd(M )]]H = snd � [[M ]]H

De�nition. We say that an equation M = N where M and N are terms legal in context
H is satis�ed in the given interpretation if [[M ]]H = [[N ]]H.

From the next theorem it follows that the interpretation given above really makes sence.

Theorem. (2.1) (Soundness) All equational rules for simply typed lambda calculus are
valid under the interpretation given above.

Proof. A straightforward check of rules. �

So now we have three vertexes of a triangle - a simply typed lambda calculus, the cor-
responding propositional logic and its term model (forming a cartesian closed category).
They represent three di�erent approaches to the same notion. We shall meet with a similar
situation in the case of second order lambda calculus and system �P which is the type theory
of �rst order predicate logic.
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PART II.

Second Order Lambda Calculus

A second order lambda calculus was �rst introduced by Girard in 1970 for the sake of
proof theory of second order intuitionistic logic. Later it was independently rediscovered in
computer science by Reynolds as a part of analysis of parametric polymorphism. Second
order lambda calculus (system F called by Girard) arises as an extension of the simply
typed lambda calculus, obtained by adding an operation of abstraction on types (universal
abstraction). Consider for example a term �x : �:x of a type � ! �. Since we made no
assumption about the type �, we can regard � as a free type variable. Second order lambda
calculus then allows us to construct term ��:�x : �:x which denotes the \polymorphic"
identity function, that is a function which can be applied to any type � and the result of
the application is the identity function �x : �:x on �. The type of polymorphic identityQ
�:� ! � is obtained from the type � ! � by means of universal abstraction

Q
. So

a term of a type
Q
�:� is a function which associates to every type � an element of type

[�=�]�. Now there is an obvious circularity problem (known as impredicativity of second
order lambda calculus): this term can be applied to any type and so, in particular, also
to its own type. One of the consequences of this circularity is a di�cult modelling of the
system. In the following chapter we shall be concerned with the syntax of second order
lambda calculus and with its expressive power.

3 Syntax

De�nition. The types of second order lambda calculus are those that can be generated by
the following clauses:

(1) There is a countable set f�1; �2; : : :g of type variables.
(2) If � and � are types, then � ! � is a type.
(3) If � is a type and � is a type variable, then

Q
�:� is a type. We say that variable �

is bounded in
Q
�:�.
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Example.
Q
�:�,

Q
�:�! �, �!

Q
�:� ! � are examples of types.

Now we proceed to de�ne the terms of the calculus. Since in the next chapters we will be
interested mainly in the semantics of second order lambda calculus, we use in the de�nition
the notion of a context.

De�nition. A context � is a (possibly empty) list of type variables, � = (�1; : : : ; �m) .
We shall write �; � for the context � = (�1; : : : ; �m; �). A type � is legal in a context � if
every free type variable of � is in �.

De�nition. A type assignment H legal in a context � is a list H = (x1 : �1; : : : ; xn : �n) of
typings for variables such that, for 1 � i � n, �i is legal in �.

De�nition. Terms of second order lambda calculus are those segments H �̀M : � (where
H is a type assignment legal in � and we say that M is of type � under assignment H)
derivable by the following typing rules:

projection: H1; x : �;H2 �̀x : �

! introduction:
H;x : �1 �̀M : �2

H �̀�x : �1:M : �1 ! �2

Q
introduction:

H �̀;�M : �

H �̀��:M :
Q
�:�

! elimination:
H �̀M : �1 ! �2; H �̀N : �1

H �̀M (N ) : �2

Q
elimination:

H �̀M :
Q
�:�

H �̀Mf�2g : [�2=�]�1
:

These rules are subject to some restrictions:

(1) In the projection rule, the variable x does not appear in H1 or H2.
(2) In the

Q
introduction rule, there is no free occurrence of � in the type of any variable

in H.
(3) In the

Q
elimination rule, all free variables of �2 are in �.

Remark. The second restriction ensures that, in a term H `���:M :
Q
�:�, the type

assignment H is legal in �.

Example. ��:�x : �:x is a term of type
Q
�:�! �. As we already mentioned, this term is

called the polymorphic identity.

Now we de�ne the equational rules of second order lambda calculus.

De�nition. An equational rule of second order lambda calculus is an expression H �̀M =
N : � which is of one of the following forms:
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re
exivity: H1; x : �;H2 �̀x = x : �

� :
H;x : �1 �̀M = N : �2

H �̀�x : �1:M = �x : �1:N : �1 ! �2

type � :
H �̀;�M = N : �

H �̀��:M = ��:N :
Q
�:�

congruence:
H �̀M1 = N1 : �1; H �̀M2 = N2 : �1 ! �2

H �̀M2(M1) = N2(N1) : �2

type congruence:
H �̀M = N :

Q
�:�1

H �̀Mf�2g = Nf�2g : [�2=�]�1
:

These rules imply that H `�M : � is term of second order lambda calculus if and only if
H �̀M =M : �. Thus, in the remaining rules, we use H �̀M : � for H �̀M =M : �.

symmetry:
H �̀M = N : �

H �̀N =M : �

transitivity:
H �̀M = N : �; H �̀N = P : �

H �̀M = P : �

� :
H;x : �1 �̀M : �2 H �̀N : �1

H �̀ (�x : �1:M )(N ) = [N=x]M : �2

type � :
H �̀;�M : �1

H �̀ (��:M )f�2g = [�2=�]M : [�2=�]�1

� :
H �̀M : �1! �2

H �̀�x : �1:M (x) =M : �1! �2

type � :
H �̀M :

Q
�:�

H �̀��:Mf�g=M :
Q
�:�

:

These rules are again subject to certain restrictions:

(1) In the re
exivity rule, the variable x does not appear in H1 or H2.
(2) In the type � rule, there is no free occurrence of � in the type of a variable in H.
(3) In the type � rule, there is no free occurrence of � in the type of a variable in H.
(4) In the � rule, the variable x does not appear in H.
(5) In the type � rule, the variable � does not apppear in �.

Example. The type � rule tells us, for example, that

(��:�x : �:x)f�g = �x : �:x;
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i.e. that the value of the polymorphic identity on the type � is indeed the identity function
on �.

Remark. We could again look at the given equations as at rewriting rules. The immediate
reductions now are

� : (�x : �:M )N ,! [N=x]M

� : �x : �:(Mx) ,!M

type � : (��:M )f�g ,! [�=�]M

type � : ��:Mf�g ,!M

(the restrictions given above apply). The reduction relation ,!� is de�ned in the same way
as in the case of simply typed lambda calculus . We have an analogy of theorem (1.1):

Theorem. (3.1) All terms of second order lambda calculus are strongly normalisable and
the normal form is unique.

Proof. Can be found in [Girard et al. 89]. �

Remark. The Curry-Howard isomorphism for natural deduction can be extended for second
order lambda calculus. The types are the formulas of (intuitionistic) second order propo-
sitional calculus and the terms denote deductions of their types, under hypotheses which
are the types of their free variables. The typing rules

Q
introduction and

Q
elimination

correspond to
:
:
:
�

8�:�

:
:
:

8�:�

[�2=�]�1
;

respectively. The reduction rule (��:M )f�g ,! [�=�]M corresponds to the conversion

:
:
:
�

8�:�
[�=�]�

converts to

:
:
:

[�=�]�:

3.1 Representation of Types

First we state an analogy of lemma (1.2):

Lemma. (3.2) The only normal terms of type � ! � and
Q
�:� are of the forms �x : �:N

and ��:N respectively.

Proof. The proof is similar to the proof of lemma (1.2). We prove both parts of the lemma
simultaneously by induction on the structure of the term M . There are four cases.

(1) M � �x : �1:M1.
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(i) Suppose that M is a normal term of type � ! � . It follows that �1 = � and
M is of the required form.

(ii) The case that M is a normal term of type
Q
�:� is immediately ruled out since

the types are incompatible.
(2) M � ��1:M1.

(i) M of type � ! � . This cannot happen since the type ofM would be
Q
�1:�1 6=

�! � .
(ii) M of type

Q
�:�. It follows that �1 = � and so M is of the required form.

(3) M �M1(M2).
(i) M of type � ! � . Then M1 must have type �1 ! (� ! � ). By induction

hypothesis M1 = �x1 : �1:M 0
1 and so M1(M2) is not a normal term.

(ii) M of type
Q
�:�. Then M1 must have type �1 ! (

Q
�:�). Again by induction

hypothesis, M1 = �x1 : �1:M 0

1 and so M1(M2) is not a normal term.
(4) M � M1f�1g. Then M1 must have type

Q
�1:�

0
1 and again by the induction hy-

pothesis the term M1f�1g is not normal. �

Now we will show how to represent some basic types in second order lambda calculus.

Boolean

We de�ne
Bool =

Q
�:�! (�! �):

We show that this type can really represent the type of booleans. De�ne

True = ��:�x : �:�y : �:x

False = ��:�x : �:�y : �:y:

Lemma. (3.3) True and False are the only closed normal terms of type Bool.

Proof. Take M to be a closed normal term of type Bool. Lemma 3.2 tells us that M is of
the form ��:�x : �:�y : �:N , where (x : �; y : �) �̀N : � and N is normal. It is easily seen
that N has to be a variable and so N is either x or y. �

For N1; N2;M of respective types �; � and Bool we de�ne DN1N2M of type � by

DN1N2M =Mf�g(N1)(N2):

Now by simple calculation we get

DN1N2 True = (��:�x : �:�x : �:x)f�g(N1)(N2)

,! (�x : �:�y : �:x)(N1)(N2)

,! (�y : �:N1)(N2)

,! N1

and

DN1N2 False = (��:�x : �:�y : �:x)f�g(N1)(N2)

,! (�x : �:�y : �:y)(N1)(N2)

,! (�y : �:y)(N2)

,! N2:
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Integer

We de�ne
Int =

Q
�:�! ((�! �)! �)

and for n 2N we put

n = ��:�x : �:�y : �! �: y(y : : : (y| {z }
n times

(x)) : : : ):

Lemma. (3.4) The only closed normal terms of the type Int are those of the form n for
some n 2 N.

Proof. Similar to the proof of lemma 1.3. TakeM to be a closed normal term of type Int.
By lemma 3.2, M is of the form ��:�x : �:�y : � ! �:N , where (x : �; y : � ! �) �̀N : �.
N is either a variable (and so x) or is of the form N1(N2) (the other cases are immediately
ruled out). Now N1 is a normal term of type � ! �. But since N is normal, N1 cannot
be of the form �z : �:N 0

1 and so N1 has to be a variable, and hence N1 is y (and � = �).
N2 is a normal term of type �, so it is again either x or y applied to an expression of type
�. It follows that N is of the form y(y : : : (y(x)) : : : ) and so M is of the form n for some
n 2 N. �

We can again de�ne basic functions on Int. For example, the successor function S is
de�ned by

SM = ��:�x : �:�y : �! �:(y(Mf�g(x)(y)))

for M of type Int. We get

Sn = ��:�x : �:�y : �! �:(y(��:�x : �:�y : �! �:y(y : : : (y(x)) : : : )f�g(x)(y)))

,! ��:�x : �:�y : �! �:(y(�x : �:�y : �! �:y(y : : : (y(x)) : : : )(x)(y)))

,! ��:�x : �:�y : �! �:(y(�y : �! �:y(y : : : (y(x)) : : : )(y)))

,! ��:�x : �:�y : �! �:(y(y(y : : : (y(x)) : : : )))

= n+ 1:

Take a closed term f of type Int ! Int. Then f induces a function jf j from N to N,
de�ned as follows:

jf j(n) = m i� f(n) ,!�m:

Since every term has a unique normal form, this function is well de�ned and total. Moreover,
it is recursive { the algorithm for computing it is simple: write the term f(n), normalize
it (since the terms are strongly normalizable, any normalization strategy will do), observe
that the normal form is m (by the previous lemma) and put jf j(n) = m. The next theorem
tells us what is the class of functions representable in second order lambda calculus.

Theorem. (3.5) The class of functions from N to N which are of the form jf j for some f
is exactly the class of provably total functions in second order Peano arithmetic.

Proof. For the proof see [Girard et al. 89]. �
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Product of types

We de�ne
� � � =

Q
�:(� ! (� ! �))! �

and for M of type � and N of type � we put

< M;N >= ��:�x : � ! (� ! �):(x(M )(N )):

The projections are de�ned as follows:

�1M =Mf�g(�x : �:�y : �:x)

�2M =Mf�g(�x : �:�y : �:y):

Let us calculate �1 < M;N > and �2 < M;N >:

�1 < M;N > = (��:�x : �! (� ! �):(x(M )(N )))f�g(�x : �:�y : �:x)

,! (�x : �! (� ! �):(x(M )(N )))(�x : �:�y : �:x)

,! (�x : �:�y : �:x)(M )(N )

,! (�y : �:M )(N )

,!M

�2 < M;N > = (��:�x : � ! (� ! �):(x(M )(N )))f�g(�x : �:�y : �:y)

,! (�x : �! (� ! � ):(x(M )(N )))(�x : �:�y : �:y)

,! (�x : �:�y : �:y)(M )(N )

,! (�y : �:y)(N )

,! N:

Binary trees

We de�ne
Bintree =

Q
�:�! ((�! (�! �))! �)

and for M;N of type Bintree we de�ne

nil = ��:�x : �:�y : �! (�! �):x

coupleMN = ��:�x : �:�y : �! (�! �):y(Mf�g(x)(y))(Nf�g(x)(y)):

nil then represents the tree consisting only of its root and coupleMN is the tree constructed
from the trees M and N by adding a common root.

These are only examples of the considerable expressive power of the system. More exam-
ples can be found in [Girard et al. 89].
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4 Categorical Semantics

In this chapter we give a de�nition of what constitutes a (categorical) model of a second
order lambda calculus (a polymorphic category). Two concepts play a vital role in ideas
that led to its de�nition - that of a cartesian closed category as a model of a simply typed
lambda calculus and that of Lawvere's hyperdoctrine. So before we start with the de�nition
of a polymorphic category, we will make a short detour and explain in the following section
the latter of these two terms.

4.1 Hyperdoctrines

In [Lawvere 69] was introduced the concept of a hyperdoctrine. In it Lawvere for the
�rst time used a method which was later generally considered satisfactory for modelling
existentional and universal quanti�cation categorically.

Let us consider a (many-sorted) �rst order intuitionistic predicate logic based on connec-
tives ^, ) and 8. Such a logic is given by the following:

(1) A many sorted signature � speci�ed by
(i) a set A of sorts; A = fA;B; : : :g.
(ii) a set F of operators; F = ff; g; : : :g together with a mapping assigning to each

operator its type which is a non-empty type list of sorts - we shall use notation
f : A1 : : :An ! B.

(iii) a set R of relational symbols; R = fR;Q; : : :g together with a mapping assign-
ing to each relational symbol its type - we shall use notation R � A1 : : :An.

(2) For each sort A 2 A we have a countably many variables of that sort. Terms over �
are de�ned recursively as follows:
(i) every variable of sort A is a term of sort A (notation x : A.
(ii) if f : A1 : : :An ! B is an operator and t1 : A1; : : : ; tn : An are terms, then

f(t1; : : : ; tn) is a term of sort B.
Context x is a list of (distinct) variables. A term t is said to be legal in context x if
all variables occuring in t are in x.

(3) Formulas over � are given inductively as follows:
(i) R(t1; : : : ; tn) is an (atomic) formula for each relational symbol R � A1 : : :An

and terms t1 : A1; : : : ; tn : An.
(ii) > is a formula (the truth).
(iii) if  and � are formulas and x : A a variable of sort A, then  ^ �,  ) �,

8x : A: are formulas.
A formula  is legal in context x if all free variables of  are in x. A sequent is an
expression of the form � `  where � is a list of formulas. A sequent � `  is legal
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in a context x (notation � ` (x)) if x contains all free variables of � and  .
(4) Rules of inference are given below:

Weakening :
� ` (x)

� ` (y)
for x � y: Identity :

�;  ` ()

> :
� `> ()

^ :
� ` () � ` � ()

� ` ^ � ()

):
�;  ` � ()

� ` ) � ()
8 :

� ` (x; y)

� ` 8y : A: (x)

Cut :
� ` () �;  ` � ()

�;� ` � ()

Note that in the 8 rule y =2 x and y is not a free variable of � or  (for the sequent
below the line to be well formed).

There are rules of two forms. A collection of sequents is closed under the
rule if whenever it contains the sequents above the line, it also contains the sequent
below the line. It is closed under the rule when it contains the sequents above
the thick line if and only if it contains the sequent below the thick line.

De�nition. A hyperdoctrine is a tuple (T; P ) where

(1) T is a cartesian closed category.
(2) P : TOP ! Cat is a functor such that

(i) for each object X of T , P (X) is a cartesian closed category.
(ii) for each morphism f : X ! Y in T , P (f) preserves the cartesian structure on

the nose.
(iii) for each morphism f : X ! Y in T , there is given a functor

Q
f : P (X)! P (Y )

which is the right adjoint to P (f) : P (Y )! P (X).

Now we can interpret the logic in a hyperdoctrine (T; P ). This interpretation is given by
the following:

(1) A structure M in T for � speci�ed by
(i) an object MA of T for each sort A,
(ii) a morphismMf : MA1 � � � � �MAn !MB in T for each operator

f : A1 : : :An ! B.
(iii) an objectMR of P (MA1�� � ��MAn) for each relational symbolR � A1 : : :An.

(2) Term t : B legal in context x = (x1 : A1; : : : ; xn : An) is interpreted by morphism

[[t]]x :MA1 � � � � �MAn !MB

in T given inductively as follows:
(i) [[xi]]x = snd � fstn�i.
(ii) [[f(t1; : : : ; tm)]]x where f : B1 : : :Bm ! B is the composition

MA1 � � � � �MAn
<[[t1]]x;:::;[[tm]]x>
�����������! MB1 � � � � �MBm

Mf
����! MB:
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(3) Formula  legal in context x = (x1 : A1; : : : ; xn : An) is interpreted by object [[ ]]x
of category P (MA1 � � � � �MAn) given inductively as follows:
(i) [[>]]x = 1P (MA1�����MAn) (the terminal object).
(ii) [[R(t1; : : : ; tm)]]x = P (< [[t1]]x; : : : ; [[tm]]x >)(MR).
(iii) [[ ^ �]]x = [[ ]]x� [[�]]x (the categorical product).
(iv) [[ ) �]]x = [[ ]]x! [[�]]x (the exponent).
(v) [[8y : A: ]]x =

Q
fstMA1�����MAn;MA([[ ]]x;y).

(4) We say that a sequent � `  legal in a context x is satis�ed in the structure M if
there is a morphism p :

Q

2�[[
]]x! [[ ]]x in P (

Q
MA).

Theorem. (4.1) Soundness The collection of sequents satis�ed in M is closed under the
rules of intuitionistic predicate logic.

Proof. We won't give here a whole proof of this theorem (although it isn't di�cult to
prove it, the proof is lengthy and tedious). Most of it follows from the fact that a cartesian
closed category satis�es the rules of intuitionistic propositional calculus (an analogy of the
Soundness theorem for simply typed lambda calculus). What we have here in addition is
the 8 rule. We'll show that it is satis�ed. First note that when y =2 x and y is not a free
variable of  then

[[ ]]x;y = P (fst)[[ ]]x:

Take a sequent � ` legal in context x; y such that y is not free in  or �. It is satis�ed in
a structure M i� there is a morphism

p :
Y

2�

[[
]]x;y! [[ ]]x;y:

Now Y

2�

[[
]]x;y =
Y

2�

P (fst)[[
]]x = P (fst)(
Y

2�

[[
]]x)

(since P (fst) preserves the cartesian closed structure on the nose).
Q
fst is a right adjoint

to P (f) so there is a morphism

p : P (fst)(
Y

2�

[[
]]x)! [[ ]]x;y

i� there is a morphism

r :
Y

2�

[[
]]x! [[8y : A: ]]x

i� M satis�es � `8y : A: in context x. So the 8 rule is satis�ed. �

Remarks.

(1) The semantics presented above could be extended to a semantics of a logic with
_, :, 9 connectives and the corresponding rules. We would then need to enrich
our de�nition of a hyperdoctrine by �nite sums and left adjoints for all P (f) (the
existentional quanti�cation would be interpreted using the left adjoints to P (fst)).
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(2) We didn't need all the features of a hyperdoctrine (for example we needed only right
adjoints to P (fst) and not to all P (f)). These features become necessary when we
want to model a predicate logic with equality.

(3) Let us mention that the logic presented in this section and its categorical interpre-
tation have also their counterpart among type systems - called the �P system.

4.2 Polymorphic Category

From the beginning the study of the semantics of a second order lambda calculus lagged
behind the study of its syntax. Obviously, the main di�culty in modeling a second order
lambda calculus lies in the interpretation of universal type

Q
�:�. We can think of a type as

the set of all objects having that type and of a type � ! � as the set of functions from � to
� . What should then the type

Q
�:� represent? A typical term of this type is ��:M where

M has type �. We can apply this term to any type � and get a term [�=�]M of type [�=�]�.
Thus ��:M is, in fact, a type-indexed family of terms and

Q
�:� would be the collection

of such families. Therefore our attempt would be to take
Q
�:� as the product

Q
� [�=�]�

indexed over all types � . Putting this in more category-theoretic terms, we would have
a small category Tp with exponentations and products indexed by the set Tp of objects
of Tp and a full and faithful functor G from Tp to the category of sets preserving these
products and exponentations. In [Reynolds 84] is shown by a simple cardinality argument
that there are no non-trivial such Tp, G, i.e. that any such Tp can only contain sets with
at most one element. It follows that none of the standard set-theoretic interpretations of
the �rst order typed lambda calculus can be extended to the model of second order lambda
calculus. So to be able to �nd a model of second order lambda calculus, we have to depart
from the naive approach of letting �-terms denote functions and types sets of functions.

In last ten years, there was a considerable progress in the study of semantical problems
and a number of models was presented. One solution, quite common, is to follow the way
which McCracken used in producing his model based on Scott's model P! [McCracken
79], i.e. to start with some suitable model of untyped lambda calculus and interpret types as
subsets of this model satisfying some closure properties. To illustrate this method we, in the
next section, brie
y describe one of these models, the one based on the partial equivalence
relation (PER) model of lambda calculus.

In 1986 Girard in [Girard 86] presented a di�erent kind of model. It was based on a
category of qualitative domains and projection-embedding pairs and in this model types
where interpreted, quite pleasingly, as qualitative domains. His ideas can be applied also to
other categories of domains what has been done in [Coquand et al. 87] for the category of
dI-domains, in [Girard et al. 89] for coherent domains (coherent spaces) and in [Coquand
et al. 89] for the category of Scott domains. In the �fth chapter we give a detailed
description of one of these models, the one based on the category of Scott domains.

In this kind of models the types with m free variables are interpreted as some functors
(Tp)m ! Tp, where Tp is a (cartesian closed) category of closed types. In [Bainbridge et
al. 89] is used yet another approach to the modelling of second order lambda calculus. Types
are here interpreted as functors (TpOP)m � (Tp)m ! Tp. This idea and its application on
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the PER model is brie
y discussed in section 4.4.
A general de�nition of what constitutes a model of a second order lambda calculus was

�rst given by Bruce and Meyer - see [Bruce et al. 90]. Later a more categorical de�nition
of a model was proposed by Seely [Seely 87] (and similar de�nition was used by Pitts in
[Pitts 87]). De�nitions given by Seely and Bruce and Meyer are not completely equivalent
and now it seems that Seely's de�nition captures wider range of models, for example the
model proposed by Girard is indeed a model in the sence of Seely but it is not a model if
we follow verbatim the Bruce and Meyer de�nition.

The rest of this section is based mainly on paper [Seely 87] where Seely gave a de�nition
of a model of higher order polymorphic lambda calculus. The de�nition we give here is a
restriction of Seely's to second order lambda calculus. Some other smaller changes were
needed, too (Seely models calculus with product types and sum operator in addition to
our implication and universal abstraction). For further references see also [Pitts 87] and
[Asperti and Longo 91].

The starting point is the equivalence between cartesian closed categories and simply typed
lambda calculi (with product types). The categorical semantics of second order lambda
calculus generalizes this semantics. We need to have some (cartesian closed) category 

whose objects interpret closed types. Then we have to give some meaning to the context
� = (�1; : : : ; �m) and to the types � legal in this context. Quite natural thing to do is
to interpret contexts as products 
m = 
 � � � � � 
 and types as morphisms � : 
m ! 
.
Moreover we have to deal with the substitution of a type legal in one context for a type legal
in another context. Consider, for example, the type (̀�;�)� ! �. Then we can substitute

the type 
̀ 
 for both � and � to get 
̀ 
 ! 
. So we need a substitution mapping from

the types legal in the context (�; �) to the types legal in the context 
 (an analogy of the
"term" mapping P (f) from the previous section).

When we �x one particular context, the types and the terms legal in this context should
form a model of simple typed lambda calculus, i.e. they should form a cartesian closed
category, whose objects are the types and morphisms the terms.

The best way how to formalize all this is to use methods of indexed category theory. A
model of second order lambda calculus will be a (contravariant) functor G : SOP ! Cat
from some cartesian closed category S (global) with distinguished object 
 to the category
Cat of small categories such that for every C 2 S, the category G(C) (local) is cartesian
closed (intended to interpret types and terms legal in the particular context). Now, as we
already mentioned, types legal in a context � = (�1; : : : ; �m) appear both as objects in
G(
m) and as morphisms 
m ! 
 in S. So it is natural to require ObjG(C) = HomS(C;
).
Morphisms f : C ! D in S should interpret types substitution and so G(f) : G(D)!G(C)
should preserve the cartesian structure (on the nose).

Finally, universal abstraction is interpreted using adjoint functors between local categories
in a way presented in the previous section.

We sum up these ideas in the following de�nition.

De�nition. A polymorphic category is a triple (S;G;
) where

(1) S is a cartesian closed category (called global category).
(2) 
 is a distinct object in S.
(3) G : SOP ! Cat is a functor such that

(i) for each object C in S, ObjG(C) = HomS(C;
) and for each morphism f : C !
D, G(f) : G(D) ! G(C) acts on objects as HomS(f;
) (so G(f) is de�ned
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by composition).
(ii) for each C in S,G(C) is a cartesian closed category (called local category) and

for each f : C ! D, G(f) preserves the cartesian closed structure on the nose.
(iii) for each C in S, there is an adjunction < G(fstC;
);

Q
C ; 'C > : G(C) !

G(C � 
) where fstC;
 : C � 
 ! C is the �rst projection morphism of the
binary product in S. Moreover, these adjunctions are natural in C, i.e. for any
f : C ! D in S, G(f) �

Q
D =

Q
C �G(f � id
).

Remarks.

(1) We could give a de�nition of a polymorphic category as a S-indexed category G.
Then < G(fst�;
);

Q
; ' > would form an S-indexed adjunction between G and G


where G
 is an S-indexed category de�ned by G
(C) = G(C � 
) and G
(f) =
G(f � id
).

(2) Yoneda lemma implies that in a PL category (S;G;
) there are morphisms

�0 : 
� 
! 


!0 : 
� 
! 

Q

0 : 


 ! 


such that for any C 2 S and for any f; g 2G(C) = HomS(C;
)

f �G(C) g = �0 � < f; g >

f !G(C) g =!0 � < f; g >

and for any h 2G(C �
) = HomS(C � 
;
)

Q
C(h) =

Q
0 ��h

(where �G(C);!G(C) denotes the binary product and the exponentation in the local

category G(C) and �h : C ! 

 is the arrow induced by the cartesian structure of
S).

We now de�ne the interpretation of the second order lambda calculus in a polymorphic
category (S;G;
). This interpretation straightforwardly follows the reasoning which led to
the de�nition of a polymorphic category.

De�nition. An interpretation of second order lambda calculus in a polymorphic category
(S;G;
) is de�ned as follows:

(1) A context � = (�1; : : : ; �m) is interpreted by the object 
m = ((1S �
)� � � ��
)
of the global category S. We use notation

[[�]] = 
m

(2) A type � legal in a context � = (�1; : : : ; �m) is interpreted by a morphism

[[�]]� : [[�]]! 
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in S de�ned inductively as follows:
(i) [[�i]]� = snd � fstm�i

(ii) [[�! � ]]� = �0 < [[�]]�; [[� ]]� >
(iii) [[

Q
�:�]]� =

Q
0 ��([[�]]�;�)

(3) A type assignment H = (x1 : �1; : : : ; xn : �n) legal in a context � = (�1; : : : ; �m) is
interpreted by the product

[[H]]� = (� � � (1G([[�]]) � [[�1]]�) � � � � � [[�n]]�)

in the local category G([[�]]).
(4) A term H �̀M : � is interpreted by a morphism

[[M ]]�;H : [[H]]�! [[�]]�

in G([[�]]) de�ned inductively as follows:
(i) [[xi]]�;H = snd � fstn�i

(ii) [[�x : �:M ]]�;H = �([[M ]]�;H;x:�)
(iii) [[��:M ]]�;H = '[[�]]([[M ]]�;�;H)
(iv) [[M (N )]]�;H = eval� < [[M ]]�;H; [[N ]]�;H >
(v) [[Mf�g]]�;H = (G(< id
m; [[� ]]� >)(Proj[[�]])) � [[M ]]�;H

where Proj[[�]] = '�1[[�]](id
m) is the counit of the adjunction

< G(fst[[�]];
);
Q

[[�]]; '[[�]] > : G([[�]])!G([[�]]� 
):

De�nition. We say that an equation H �̀M = N : � is satis�ed under the given interpre-
tation if [[M ]]�;H = [[N ]]�;H.

Theorem. (4.2) (Soundness) All equational rules for second order lambda calculus are
valid under the interpretation given above.

Proof. This is just a routine check of required equations. (Complete proof of a similar
theorem for a model of second order lambda calculus based on Scott domains is given in
chapter �ve). �

4.3 PER Model

In this section we brie
y describe model of second order lambda calculus based on the
partial equivalence relation model of untyped lambda calculus.

De�nition. A partial equivalence relation (per) on a set S is a symmetric and transitive
binary relation A on S. For a; b 2 S we write aAb to mean that a and b are related by the
per A.
Remark. The standard PER model of untyped lambda calculus works with pers on the
set N of natural numbers. We shall suppose that we have given some enumeration of
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partial recursive functions from N to N and we shall write fn for the n-th function in
this enumeration. Moreover we suppose that we have given a �xed recursive bijection
<;> : N �N!N.

De�nition. PER(N) is the following category: its objects are the pers on N. Given
A;B 2 PER(N), we say that a morphism from A to B is named by partial recursive
function fn if fn induces a map of pers from A to B, that is whenever aAb (a; b 2N) then
both fn(a) and fn(b) are de�ned and fn(a)Bfn(b). Two functions fn; fm : A! B name the
same morphism if aAb implies fn(a)Bfm(b). Morphisms in PER(N) are those named by
some functions.

Theorem. (4.3) PER(N) is a cartesian closed category.

Proof. Product of pers A and B is a per A � B such that < a; b > (A � B) < c; d > i�
aAc and bBd. Exponent of A and B is the per A ! B such that a(A ! B)b i� fa and fb
name the same morphism from A to B. Terminal object in PER(N) is the per 1PER(N) with
one equivalence class. Clearly the given constructions form a cartesian closed structure on
N. �

Construction. Now we describe the PER model of second order lambda calculus using
the formalization from the previous section. The global category S has the natural numbers
as objects where 1 plays the role of 
. Morphisms of the global category from m to n are
functions Obj(PER(N))m ! Obj(PER(N))n. Note that in this category 0 is the terminal
object and product and exponent of m and n are given by

m� n = m! n = m + n:

The local category G(m) over m 2 N is then the (cartesian closed) category of functions
Obj(PER(N))m ! Obj(PER(N)) with products and exponents computed componentwise.
The value of the functor

Q
m : G(m+1)!G(m) on any object F 2G(m+1) is a functionQ

m(F ) : Obj(PER(N))m ! Obj(PER(N)) given by

Q
m(F )(X1; : : : ; Xm) =

\

A2Obj(PER(N))

F (X1; : : : ; Xm; A):

To every term H �̀M : � where H = (x1 : �1; : : : ; xn : �n) and � = (�1; : : : ; �m) we can
associate a term M� of untyped lambda calculus simply by erasing the types from M. We
proceed by induction on the structure of M :

(1) (xi)� = xi
(2) (�x : �:M )� = �x:M�

(3) (MN )� = M�N�

(4) (��:M )� =M�

(5) (Mf�g)� =M�

Now to this term M� we associate a natural number [[M�]]e by the following induction:

(1) [[xi]]e is (the code of) the partial recursive function �2 � �
m�i
1 where �1; �2 are the

\projection" recursive functions of the pairing bijection <;> : N �N ! N; that is
�1(< a; b >) = a and �2(< a; b >) = b.

(2) [[MN ]]e = f[[M ]]e ([[N ]]e):
(3) [[�x:M ]]e is (the code of) the partial recursive function g such that fg(a)(b) = f[[M ]]e (<

a; b >).
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A routine check tells us that the [[M�]]e{th partial recursive function f[[M� ]]e names a mor-
phism from [[�1]]�� � � � � [[�n]]� to [[�]]� in the local category G(m). So [[M�]]e will be the
interpretation of the term H �̀M : � . To verify that we have really got the interpretation
described in the previous section accounts to checking a few equations.

4.4 Functorial PER Model

In the area of computer science second order lambda calculus was proposed to serve as
a syntax for the notion of paramatric polymorphism. Intuitively, a parametric polymorphic
function is one that has a uniformly given algorithm for all types.

Example. Consider a function f which takes an argument of a type � and associates to
it an element of a type � (so that f is of a type � ! � ). For any type � let �-list be the
type of lists of elements of the type � and let L be a list of a type �-list. Consider now the
following function map: it applies f to the elements of L and then makes a list of results
{ this is of a type � -list. Thus map has a type (� ! � ) ! (�-list ! � -list). Note that no
speci�c properties of types � and � were used. This map is an example of a function given
uniformly for all types - parametric polymorphic function.

In the last few years a great attention was paid to the problem to �nd a semantic approx-
imation of this notion. A natural starting point is to interpret types as functors Cm ! C
and terms as natural transformations between them, all de�ned over some cartesian closed
category C of closed types. The implication operator ! then corresponds to the internal
hom functor ) : COP � C ! C. Unfortunately, this functor is contravariant in the �rst
argument and covariant in the second one and so

�) � =) � < �; � > : Cm <�;�>
����! C�C

)
�! C

is not a functor (where �; � : Cm ! C).
One solution of this problem is to work with pairs of morphism instead of simple ones

which serves to obliterate the di�erence between covariant and contravariant. This is the
way which used Girard in constructing his model and this approach we discuss in the next
chapter.

In [Bainbridge et al. 89] was proposed another method of solving the problem { not
to work with functors Cm ! C but rather with functors (COP)m � Cm ! C and in this
case the problem described above does not arise. Terms then are not natural but dinatural
transformations. These, unfortunately, are not in general composable and so it would not be
possible to substitute terms for the free variables in other terms. Neverthless it is possible
to �nd models based on this idea. In [Bainbridge et al. 89] is the idea applied to the PER
model and worked out in some detail. We give here just a brief description of the model
presented there, details and proofs of theorems can be found in the paper.

De�nition. A dinatural transformation u between two functors F;G : (COP)m �Cm ! C
is a family of morphisms u = fuA : F (A;A)! G(A;A)jA 2 Cmg such that, for any vector
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of morphisms f : A! B,
F (A;A)

uA����! G(A;A)

F (f ;idA)

x??
??yG(idA;f )

F (B;A) G(A;B)

F (idB;f )

??y
x??G(f ;idA)

F (B;B) ����!
uB

G(B;B)

commutes. We use notation u : F
::
�! G.

Remark. As we already mentioned, dinatural transformations do not compose in general.

De�nition. Given two functors F;G : Cm �Cm ! C. We de�ne GF : (COP)m �Cm ! C
(called twisted exponential) to be the functor

(COP)m �Cm <FOP;G>
������! COP �C

)
�! C:

Remark. Recall that F �G : (COP)m �Cm ! C was de�ned to be the functor

(COP)m �Cm <F;G>
����! C �C

�
�! C:

We shall denote by I the subcategory of PER(N) whose objects are all pers on N but
whose only morphisms are those named by the identity function on N.

De�nition. A realizable functor F : PER(N) ! PER(N) is one which takes I to I (setwise)
and for which there exists a mapping � from the set of partial recursive functions to itself
such that, for any morp�sm of pers from A to B named by function f , F (f) is named by
�(f).

Remark. Realizable functors are closed under products, twisted exponentials and substi-
tution.

De�nition. Let. F;G : (PER(N)OP)m � PER(N)m ! PER(N) be realizable functors. A
family u = fuA : F (A;A) ! G(A;A) jA 2 PER(N)g (not necessarily dinatural) is called
a realizable family if there is a single partial recursive function ' such that each morphism
uA is denoted by '.

Theorem. (4.4) Realizable dinatural transformations compose.

Corollary. (4.5) For each m 2 N, the realizable functors (PER(N)OP)m � PER(N)m !
PER(N) and the realizable dinatural transformations between them form a cartesian closed
category.

De�nition. Given a realizable functor G : (PER(N)OP)m � PER(N)m ! PER(N), the
realizable end of G (denoted

R
A
G(A;A) where A 2 PER(N)m) is a per E 2 PER(N)
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together with realizable dinatural transformation ! : KE
::
�! G universal for all such re-

alizable dinatural transformations (where KE : (PER(N)OP)m � PER(N)m ! PER(N) is
the constant functor with value E). That is, for any D 2 PER(N) and for any realizable
dinatural transformation � : KD

::
�! G there is a unique realizable dinatural transformation

h : Kd
::
�!KE such that

�A = !A � hA

for any A 2 PER(N)m.

Remarks.

(1) The given de�nition of a realizable end of a realizable functor is a special case of
more general de�nition of an end of a functor. Its special case for covariant functor
is just the de�nition of a limit of a functor. The realizable end of a functor will
provide an interpretation of universal types.

(2) For G : (PER(N)OP)m+1 � PER(N)m+1 ! PER(N), we write
R
Q
G(�; Q;�; Q),

where Q 2 PER(N), for the functor (PER(N)OP)m � PER(N)m ! PER(N) whose
value on (A;B), where A;B 2 PER(N)m , is the end

R
Q(A; Q;B; Q) of the functor

G(A;�;B;�) : PER(N)OP � PER(N)! PER(N):

Theorem. (4.6) For any realizable functor G : (PER(N)OP)m � PER(N)m ! PER(N)
the realizable end

R
A
G(A;A) exists.

Now we give a description of an interpretation of second order lambda calculus in the
terms of realizable functors and realizable dinatural transformations.

De�nition. An interpretation [[�]]� of a type � legal in the context � = (�1; : : : ; �m) is a
realizable functor (PER(N)OP)m � PER(N)m ! PER(N) given inductively as follows:

(1) [[�i]]� is the projection functor onto ith covariant argument, i.e. [[�i]]�(A;B) = Bi.

(2) [[�! � ]]� = [[� ]][[�]]�� (twisted exponential).
(3) [[

Q
�:� ]]� is the realizable functor given by

[[
Q
�:� ]]�(A;B) =

R
Q
[[� ]]�;�(A; Q;B; Q)

where Q is any per.

Terms are interpreted in the same way as in the previous section. It is easy to verify that
[[M�]]e names a realizable dinatural transformation

[[M�]]e : ([[�1]]�� � � � � [[�n]]�)
::
�! [[�]]� : (PER(N)OP)m � PER(N)m ! PER(N):
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5 Scott Domains Model

In 1986 J. Y. Girard in his paper [Girard 86] used a new method for producing a model
of second order lambda calculus where types were interpreted as qualitative domains. Later
ideas presented in this paper were applied to other categories of domains, namely to the
category of dI-domains in [Coquand et al. 87], the category of complete algebraic lattices
in [Coquand and Ehrhard 87], the category of coherence spaces [Girard et al. 89] and
the category of Scott domains [Coquand et al. 89]. In this chapter we describe in detail
the probably most interesting model of these, the one based on Scott domains.

5.1 Scott Domains and Categories

In this section we review some basic de�nitions and results concerning Scott domains as
well as a few more notions of category theory. Proofs can be found in any paper concerning
Scott domains.

De�nition. Let (D;�) be a partially ordered set. We say that

(1) (D;�) is directed if it is nonempty and, for any i; j 2 D, there is k 2 D such that
i � k and j � k.

(2) (D;�) is complete (and we say that (D;�) is a cpo) if it has a least element ? and
every directed subset M � D has a least upper bound

W
M .

(3) a point x 2 D is �nite if for every directed M � D such that x �
W
M there is

y 2M such that x � y. Let BD denote the set of �nite elements of D.
(4) (D;�) is algebraic if, for every x 2 D, the set M = fx0 2 BD j x0 � xg is directed

and x =
W
M .

(5) (D;�) is bounded complete if every bounded subset of D has a least upper bound.

De�nition. A Scott domain is a bounded complete algebraic cpo.

Remark. The least upper bounds of �nite sets of �nite elements are �nite, when they exist.

De�nition. Let (D;�D), (E;�E) be partially ordered sets. A function f : D ! E is
monotonic if it preserves the order, that is x �D y implies f(x) �E f(y).
A monotonic function f : D ! E is continuous if f(

W
M ) =

W
f(M ) for any directed

M � D.

Remark. Scott domains and continuous functions between them form an important carte-
sian closed category D. Product of two domains D and E is the domainD�DE of pairs of
elements (d; e) where d 2 D and e 2 E ordered coordinatewise with the obvious projections
fstD;E and sndD;E. Their exponent D !D E is a domain consisting of the continuous
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functions from D to E ordered pointwise, i.e.

f � g i� 8d 2 D; f(d) � g(d):

De�nition. A pair of continuous functions (f; g) where f : D ! E and g : E ! D between
two cpos D and E is called embedding-projection pair if, for all d 2 D, g � f(d) = d and, for
all e 2 E, f � g(e) � e.

Remark. If h = (f; g) is an embedding-projection pair then f is called the embedding
(notation hL = f) and g the projection (hR = g). As embedding-projection pair forms a
special case of adjoint functors (between two categories which are partially ordered sets) the
embedding determines its accompanying projection uniquely and vice versa. Scott domains
and embedding-projection pairs form a cartesian closed category DEP. The composition of
two embedding-projection pairs is de�ned in the obvious way: for h = hL; hR) 2DEP(D;E)
and k = (kL; kR) 2DEP(E;F ) we put

k � h = (kL � hL; hR � kR) 2DEP(D;F ):

The identity morphism of a domain D is the pair (idD; idD). The cartesian structure of
DEP is then given by the same constructions as in the category D.

De�nition. A colimit < �i 2 D
EP(Di; D) >i2I in DEP is directed if the indexing poset I

is directed. A category is directed complete if it has colimits of all directed families.

Remark. So a cpo is directed complete when regarded as a category.

Theorem. (5.1) The category DEP is directed complete. A cone < �i 2D
EP(Di; D) >i2I

is a directed colimit i� f�Li � �
R
i j i 2 Ig is directed in D !D D and

idD =
_
f�Li � �

R
i j i 2 Ig:

Theorem. (5.2) Let D be a domain. Then

ffL � fR j f 2DEP(X;D) for some �nite domain Xg

is a directed subset of �nite elements in D !D D and

idD =
_
ffL � fR j f 2DEP(X;D) for some �nite domain Xg:

Remark. From theorem (5.2) it follows that a domain is a colimit of the �nite domains
which embed into it.

Lemma. (5.3) Let f0 2 DEP(X0; D) and f1 2 DEP(X1; D), where X0; X1 are �nite
domains. Then there is a �nite domainX and g 2DEP(X;D) so that g0 = (gR�fL0 ; f

R
0 �g

L) 2
DEP(X0; X) and g1 = (gR � fL1 ; f

R
1 � g

L) 2 DEP(X1; X) with f0 = g � g0 and f1 = g � g1.
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Lemma. (5.4) Suppose < �i 2 D
EP(Di; D) >i2I is a directed colimit in DEP. If X is a

�nite domain and f 2 DEP(X;D) then there is some i 2 I and h 2 DEP(X;Di) such that
f = �i � h.

De�nition. A functor F : C ! C 0 between directed complete categories is continuous if it
preserves directed colimits.

Remarks.

(1) We de�ne the following two continuous functors �;! : DEP �DEP !DEP:
The product operator � is de�ned by

�(A;B) = A�B

�(f; g) = f � g : A �A0 ! B � B0

where A;B 2DEP, f 2DEP(A;B) and g 2DEP(A0; B0).
The function operator ! is de�ned by

! (A;B) = A! B

! (f; g) = f ! g 2DEP(A! A0; B ! B0)

where
(f ! g)L(h) = gL � h � fR

for h 2D(A;A0) and

(f ! g)R(h0) = gR � h0 � fL

for h0 2D(B;B0).
(2) In order to cope with the presence of free type variables it is convenient to de�ne

generalizations of the product and function space functors. Given F;G : C ! DEP

we de�ne

F#G = � � (F �G) ��: C
�
�! C �C

F�G
���!DEP �DEP �

�!DEP

F ) G =! �(F �G) ��: C
�
�! C �C

F�G
���!DEP �DEP !

�!DEP

where � is the diagonal functor. We can also de�ne a multiary version of the #
by taking #() to be the functor into the trivial domain 1DEP and setting

#(F1; : : : ; Fn+1) = #(F1; : : : ; Fn)#Fn+1:

(3) Given functors F1; : : : ; Fn and 1 � i � n we de�ne

pi;nX : F1(X) � � � � � Fn(X)! Fi(X)

to be the ith projection of the product F1(X) � � � � � Fn(X).
(4) In order to simplify notation we shall write FL(f) (resp. FR(f)) for (F (f))L (resp.

(F (f))R). To reduce the number of parentheses we shall also assume that association
is to the left so that expressions such as fxy or f(x)(y) represent an expression
(f(x))(y).
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5.2 Continuous Sections

Now we come to the central part of the model. In this section we describe a construction
which allows us to interpret universal abstraction. In [Coquand et al. 89] this is done in
more general way working with Grothendieck �brations and their continuous sections. Since
it is not essential for understanding the model, we omit the general de�nition of Grothendieck
�bration and restrict ourselves to its special form in the category DEP.

De�nition. Let F : C ! DEP be a continuous functor from a directed complete category
C. We de�ne category

Q
F of continuous sections of (the Grothendieck co�bration of) F

as follows:

(1) Objects of
Q
F are families < tX >X2C , where tX 2 F (X), satisfying the following

conditions:
(i) If f 2 C(X;Y ) then

FL(f)tX � tY (monotonicity):

(ii) If < �i 2 C(Xi; X) >i2I is a directed colimit in C then

tX =
_
i2I

FL(�i)tXi
(continuity):

(2) There is at most one morphism between two continuous sections t and t0 { we write
this morphism as t � t0 and de�ne

t � t0 i� 8X 2 C:tX � t
0

X :

Remark. Recalling Theorem (5.1) we can, for a functor F : DEP ! DEP, rewrite the
condition (ii) as follows: If for a cone < �i 2 D

EP(Xi; X) >i2I we have f�
L
i � �

R
i j i 2 Ig is

directed in X ! X and
W
i2I �

L
i � �

R
i = idX then tX =

W
i2I F

L(�i)tXi
. We shall later use

this form of the condition (ii).

Since our aim is to interpret closed types as domains and types with one free variable as
continuous functors F : DEP !DEP we need, in particular,

Q
F to be one. Unfortunately,

it is not quite as its objects are not sets. But we can put the objects of
Q
F in 1-1 corre-

spondence with the elements of a suitable set. Take S to be some countable subcategory
of DEP equivalent to the full subcategory of all �nite domains (with embedding-projection
pairs as morphisms). Any continuous section is determined by its restriction to the domains
of S. So in this sence

Q
F is isomorphic to a partially ordered set and in fact, as we shall

see, to a domain.

Theorem. (5.5) Let F : DEP ! DEP be a continuous functor. Then the category
Q
F is

isomorphic to a Scott domain (regarded as a category).

Proof. Take
Q
S
F to be the partial order consisting of monotonic families < tX >X2S,

i.e. families satisfying condition (i). Clearly,
Q
S
F is a set because S is. Now we show thatQ

F and
Q
S
F are isomorphic (as categories) and, later, that

Q
S
F is a domain.
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Any continuous section t 2
Q
F determines, by restriction, an element res t 2

Q
S
F .

Conversely, any t 2
Q
S
F can be extended to a continuous section ext t 2

Q
F by taking

(ext t)D =
_
fFL(f)tX jX 2 S & f 2 DEP(X;D)g

for any domain D. We must check that this is well de�ned.
First of all we check that the set

W
fFL(f)tX jX 2 S & f 2 DEP(X;D)g is directed

(and so the least upper bound exists). For any two elements of this set y0 = FL(f0)tX0 and
y1 = FL(f1)tX1 arising from morphisms f0 2 D

EP(X0; D) and f1 2 DEP(X1; D), X0; X1

are �nite, there is, by Lemma (5.3), a �nite domainX and morphisms g 2DEP(X;D), g0 2
DEP(X0; X), g1 2D

EP(X1; X) such that f0 = g � g0 and f1 = g � g1. t is monotonic and so
y0 = FL(g � g0)tX0 � F

L(g)tX . Similarly y1 � F
L(g)tX and hence the set

W
fFL(f)tX jX 2

S & f 2 DEP(X;D)g is directed and the de�nition above de�nes a family. It remains to
show that this family is monotonic and continuous. For any g 2DEP(D;E) we get

FL(g)(ext t)D = FL(g)
_
fFL(f)tX jX 2 S & f 2 DEP(X;D)g

=
_
fFL(g) � FL(f)tX jX 2 S & f 2DEP(X;D)g

=
_
fFL(g � f)tX jX 2 S & f 2 DEP(X;D)g

�
_
fFL(h)tX jX 2 S & h 2DEP(X;E)g

= (ext t)E :

This shows the monotonicity. Take a directed colimit < �i 2 D
EP(Di; D) >i2I . We need to

show that
(ext t)D =

_
i2I

fFL(�i)(ext t)Di
j i 2 Ig:

The set is directed because ext t is monotonic. From monotonicity we also get

(ext t)D �
_
i2I

fFL(�i)(ext t)Di
j i 2 Ig:

(ext t)D =
W
fFL(f)tX j X 2 S & f 2 DEP(X;D)g. Take an element FL(F )tX of the

set on the right hand side. By Lemma (5.5), there is i 2 I and f 2 DEP(X;D) such that
f = �i � h. Now we have

FL(f)tX = FL(�i � h)tX

= fL(�i)(F
L(h)tX )

� FL(�i)(ext t)Di
:

It follows that the other inequality (ext t)D �
W
fFL(�i)(ext t)Di

j i 2 Ig holds and hence
ext t is continuous.

It is easy to see that the two operations res :
Q
F !

Q
S
F and ext :

Q
S
F !

Q
F

preserve the order relation (and so are functors when the domains regarded as categories).
Take t 2

Q
S
F . Then, for Y 2 S, we have tY � (ext t)Y { to see this , take in the

de�nition of ext t f to be the identity on Y . From the monotonicity of T we get

(res ext t)Y =
_
fFL(f)tX jX 2 S & f 2DEP(X;Y )g � tY
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and hence res ext t = t. Conversely, for t 2
Q
F , we have (res t)X = tX for any X 2 S.

Then, from the de�nition of ext we obtain

(ext res t)D =
_
fFL(f)tX jX 2 S & f 2DEP(X;D)g

for any domainD. But since t is continuous andD is the directed colimit of �nite embeddings
(see the remark following Theorem (5.2)), we also have

tD =
_
fFL(f)tX jX 2 S & f 2 DEP(X;D)g:

Hence ext res t = t. So res and ext form an isomorphism.
Now we proceed to show that

Q
S
F is a domain. The least element is the family

<?X>X2S. Suppose fti j i 2 Ig is a directed subset of
Q
S
F . Take t to be the family

de�ned by

tX =
_
i2I

tiX ;

for X 2 S. The least upper bound on the right exists because the set ftiX j i 2 Ig is directed
in F (X). t is monotonic because, for f 2DEP(X;Y ),

FL(f)tX = FL(f)(
_
i2I

tiX ) =
_
i2I

FL(f)tiX �
_
i2I

tiY ;

where we used the fact that FL(f) is continuous. Hence t is the least upper bound of the
set fti j i 2 Ig and so

Q
S
F is complete. To show that it is bounded complete we proceed

similarly. Suppose fti j i 2 Ig is bounded by s, i.e. ti � s for i 2 I and de�ne t by taking

tX =
_
i2I

tiX :

Now the least upper bound exists because ftiX j i 2 Ig is bounded in F (X). It is again
monotonic {

FL(f)tX = FL(f)(
_
i2I

tiX ) =
_
i2I

FL(f)tiX �
_
i2I

tiY ;

using the fact that embeddings preserve all existing upper bounds.
It remains to show that

Q
S
F is algebraic. Suppose there is t 2

Q
S
F such that tX =

e 2 F (X) is �nite for some X 2 S. De�ne

[S; e]Y =
_
fFL(f)e j f 2DEP(X;Y )g

for Y 2 S. This is well de�ned (tY is a bound for the set on the right) that it is monotonic
and does not depend on the choice of t. Consider a family

s = [X1; e1]_ � � � _ [Xn; en]:

We show that s is a �nite element of
Q
S
F . Suppose s �

W
M where M is directed subset

of
Q
S
F . Then, for any 1 � i � n, we get
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eXi
� sXi

� (
_
M )Xi

=
_
m2M

mXi
:

As ei is �nite, ei � mi
Xi

for some mi 2 M . But then [Xi; ei] � mi. Since M is directed,

there is m 2M which dominates each mi for 1 � i � n and so s � m. Hence s is �nite.

Any t 2
Q
S
F is easily seen to be the least upper bound of the directed set

f[X1; e1] _ � � � _ [Xn; en] j e1 � tXi
& � � � & en � tXn

g

where the least upper bounds [X1; e1]_ � � �_ [Xn; en] exist because they are bounded above.
Since in a domain least upper bouns of �nite sets of �nite elements are �nite (when they
exist), it follows that any �nite element of

Q
S
F must be of the form [X1; e1]_� � �_ [Xn; en].

Hence
Q
S
F is algebraic and so a domain. �

Remarks.

(1) In the following we shall treat
Q
F as a domain. It would be possible to replace

everywhere
Q
F by

Q
S
F provided above but this would only make the text even

more complicated.
(2) We will need to use

Q
operator with parameters. If F : (DEP)m+1 ! DEP is a

continuous functor, we shall write
Qm

F : (DEP)m !DEP for the continuous functor
de�ned as follows:

(
Qm F )(A) =

Q
(F (A;�))

for A 2 (DEP)m. Given f 2 (DEP)m(A;B), we put

(
Qm

F )(f) 2DEP((
Qm

F )(A); (
Qm

F )(B))

by taking

(
Qm

F )L(f)(s)Z = FL(f; idZ)(sZ)

(
Qm

F )R(f)(t)Z = FR(f; idZ)(tZ)

for each section s 2 (
Qm

F )(A) and t 2 ((
Qm

F )(B). Checking that this is well

de�ned is a routine. Note that
Q0

F for F : DEP !DEP is
Q
F .

Now we introduce notation and results needed to provide a semantics of second order
lambda calculus which is done in the next section.

Lemma. (5.6) Suppose F1; : : : ; Fn : (DEP)m !DEP are continuous functors. Then pi;n is
a continuous section of the functor #(F1; : : : ; Fn))Fi.

Proof. For de�nition of pi;n see the end of section 5.1. Suppose f 2 (DEP)m(X;Y ) and
(x1; : : : ; xn) 2 F1(X) � � � � � Fn(X). Recall that

(#(F1; : : : ; Fn))Fi)(X) = #(F1(X) � � � � � Fn(X)) !DEP Fi(X)
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and so really pi;nX 2 (#(F1; : : : ; Fn))Fi)(X). Then

(#(F1; : : : ; Fn))Fi)
R(f)(pi;nY )(x1; : : : ; xn)

= (FR
i (f) � p

i;n
Y �#(F1; : : : ; Fn)

L(f))(x1; : : : ; xn)

= FR
i (f)(F

L
i (f)(xi))

= xi

= pi;nX (x1; : : : ; xn)

and we get

(#(F1; : : : ; Fn))Fi)
L(f)(pi;nX )(y1; : : : ; yn)

= (#(F1; : : : ; Fn))Fi)
L(f)(#(F1; : : : ; Fn))Fi)

R(f)(pi;nY )(y1; : : : ; yn)

� pi;nY (y1; : : : ; yn):

Hence pi;n is monotonic and it is easy to see that it is continuous: Let fj 2 (DEP)m(Xj ; X),
for j 2 J such that ffLj � f

R
j g form a directed collection such that

W
j f

L
j � f

R
j = idX. Then

_
j2J

(#(F1; : : : ; Fn))Fi)
L(fj)(p

i;n
Xj
)(x1; : : : ; xn)

=
_
j2J

(FL
i (fj) � p

i;n
Xj
�#(F1; : : : ; Fn)

R(fj))(x1; : : : ; xn)

=
_
j2J

(FL
i (fj)(F

R
i (fj))(xi)

= xi

= pi;nX (x1; : : : ; xn): �

Suppose P; F;G : (DEP)m ! DEP are continuous functors. Suppose also that s is a
continuous section of the functor P)(F)G) : (DEP)m !DEP and t is a continuous section
of the functor P)F : (DEP)m !DEP. Then de�ne a family apply(s; t) by

apply(s; t)X(x) = (sX (x))(tX (x));

where X 2 (DEP)m and x 2 P (X).

Lemma. (5.7) apply(s; t) is a continuous section of the functor P)G : (DEP)m !DEP.

Proof. To show that apply(s; t) is monotonic, suppose f 2 (DEP)m(X;Y ). Then for
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y 2 P (Y ) we have

(P)G)L(f)(apply(s; t)X )(x)

= (GL(f) � (apply(s; t)X) � P
R(f))(x)

= GL(f)((apply(s; t)X)(P
R(f)(x)))

= GL(f)((sX (P
R(f)(x)))(tX (P

R(f)(x))))

� GL(f)(((F)G)R(f)(sY (x)))(F
R(f)(tY (x))))

= GL(f)((GR(f) � (sY (x)) � F
L(f))(FR(f)(tY (x))))

� (sY (x))(tY (x))

= apply(s; t)Y (x):

To show that apply(s; t) is continuous , suppose we have fi 2 (D
EP)m(Xi; X) for i 2 I such

that ffLi � f
R
i g is directed in X !DEP X and

W
i f

L
i � f

R
i = idX. Then for x 2 P (X)

_
i

(P)G)L(fi)(apply(s; t)Xi
)(x)

=
_
i

GL(fi)((sXi
(PR(fi)(x)))(tXi

(PR(fi)(x))))

=
_
i

GL(fi)(((F)G)
R(fi)((P)(F)G))L(fi)(sXi

)(x)))

(FR(fi)((P)F )
L(fi)(tXi

)(x))))

=
_
i

GL(fi)(((F)G)
R(fi)(sX (x)))(F

R(fi)(tX (x))))

=
_
i

((GL(fi) �G
R(fi))(sX (x))((F

L(fi) � F
R(fi))(tX (x))

= apply(s; t)X(x): �

Suppose P;G : (DEP)m ! DEP, F : (DEP)m+1 ! DEP are continuous functors and t
is a continuous section of the functor P)

Qm
F : (DEP)m ! DEP. We de�ne a family

Apply(t; G) by
Apply(t; G)X(x) = tX(x)G(X);

where x 2 P (X).

Lemma. (5.8) Apply(t; G) is a continuous section of the functor
P)(F� < Id(DEP)m ; G >) : (DEP)m !DEP.

Proof. In a similar way as in the proofs of the previous two lemmas we show that
Apply(t; G) is indeed monotonic and continuous. �

Let P; F;G : (DEP)m ! DEP be continuous functors. Suppose t is a continuous section
of the functor (P#F ))G : (DEP)m !DEP. Take a family curry(t) de�ned by

curry(t)X (x)(y) = tX (x; y);
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where x 2 P (X) and y 2 F (X).

Lemma. (5.9) curry(t) is a continuous section of the functor P)(F)G) : (DEP)m !
DEP.

Proof. In a similar way as the proof of Lemmma 5.7. �

Suppose P : (DEP)m ! DEP and F : (DEP)m+1 ! DEP are continuous functors. Let t
be a continuous section of the functor (P � Fst(DEP)m;DEP))F : (DEP)m+1 ! DEP. Let

X 2 (DEP)m and x 2 P (X). We de�ne Curry(t)X (x) to be the continuous section of
F (X;�) : DEP !DEP given by the equation

Curry(t)X (x)Z = t(X;Z)(x);

where Z 2DEP.

Lemma. (5.10) Curry(t) is a continuous section of the functor P)
Qm

F : (DEP)m !
DEP.

Proof. Similar as the proof of Lemmma 5.7. �

Suppose P; F;G : (DEP)m ! DEP are continuous functors and suppose we have given s
to be a continuous section of (P#F ))G and t to be a continuous section of P)F . Then
we de�ne a continuous section [t]s of P)F by

([t]s)X(x) = apply(curry(s); t)(x) = sX (x; tX(x));

where x 2 P (X).

Lemma. (5.11)

(1) Take t; s; t0; s0 to be continuous sections of functors P)F; ((P#F )#F ))G;
((P#F )#F ))G and ((P#F ))F , respectively. If t0X(p; b) = tX(p) and s0X (p; b; a)
= sX (p; a; b) for every X; p; a and b, then curry([t0]; s0) = [t](curry(s)).

(2) If t0(X;Y ) = tX , then Curry([t0]s) = [t](Curry(s)) (where t; s; t0 are continuous

sections of appropriate functors).
(3) apply([t]r; [t]s) = [t](apply(r; s)).
(4) Apply([t]s;G) = [t](Apply(s;G)).

Proof.

(1)

curry([t0]s0)X(p)(b) = ([t0]s0)X (p; b)

= s0X (p; b; t
0

X(p; b))

= sX (p; tX(p); b)

= curry(x)X(p; tX(p))(b)

= ([t](curry(s)))X (p)(b):
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(2)

Curry([t0]s)X(x)Y = s(X;Y )(x; t
0

(X;Y )(x))

= s(X;Y )(x; tX(x))Y

= [t](Curry(s))X (x)Y :

(3)

apply([t]r; [t]s)X(x) = ([t]rX(x))([t]sX (x))

= (rX(x; tX(x)))(sX (x; tX(x)))

= apply(r; s)X (x; tX(x))

= [t](apply(r; s))X (x):

(4)

Apply([t]s;G)X(x) = ([t]s)X(x)G(X)

= sX (x; tX(x))G(X)

= Apply(s;G)X(x; tX(x))

= [t](Apply(s;G))X (x): �

Suppose that P;K : (DEP)m ! DEP and F : (DEP)m+1 ! DEP are continuous functors
and that t is a continuous section of (P � Fst(DEP)m;DEP))F ). We de�ne a continuous
section [K]t of P)(F� < Id(DEP)m ; G >) by

([K]t)X(x) = Apply(Curry(t);K)X (x) = t(X;G(X)(x):

Lemma. (5.12)

(1) curry([K]t) = [K](curry(t)).
(2) If t0(X;Z;Y ) = t(X;Y;Z) for eachX, Y and Z, then Curry([K�Fst]t0) = [K](Curry(t)).

(3) apply([K]s; [K]t) = [K](apply(s; t)).
(4) Apply([K]t;H� < Id;K >) = [K](Apply(t;H)).

Proof.

(1)

curry([K]t)X(x)(y) = ([K]t)X (x; y)

= t(X;K(X))(x; y)

= curry(t)(X;K(X))(x)(y)

= [K](curry(t))X (x)(y):
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(2)

Curry([K �Fst]t)X(x)Z = Curry([K �Fst]t0)(X;Z)

= t0(X;Z;G(X))(x)

= t(X;G(X);Z)(x)Z

= Curry(t)(X;G(X))(x)Z

= [K](Curry(t))X (x)Z :

(3)

apply([K]s; [K]t)X(x) = (([K]s)X (x))(([K]t)X(x))

= (s(X;K(X))(x))(t(X;K(X))(x))

= (apply(s; t))(X;K(X))(x)

= [K](apply(s; t))X (x):

(4)

Apply([K]t;H� < Id;K >) = ([K]t)X (x)H(X;K(X))

= t(X;K(X))(x)H(X;K(X))

= Apply(t;H)(X;K(X))(x)

= [K](Apply(t;H))X(x): �

5.3 Semantics

Now we �nally describe the semantics for second order lambda calculus in this model. As
we already mentioned, types are interpreted as functors from (DEP)m to DEP.

De�nition.

(1) An interpretation [[�]]� of a type � legal in a context � = (�1; : : : ; �m) is a continuous
functor (DEP)m !DEP de�ned inductively as follows:

(i) [[�i]]� = Pi;m
(DEP)m

(ii) [[�! � ]]� = [[�]]�)[[� ]]�
(iii) [[

Q
�:�]]� =

Qm([[�]]�).
(2) A type assignment H = (x1 : �1; : : : ; xn : �n) legal in a context � = (�1; : : : ; �m) is

interpreted by the functor [[H]]� = #([[�1]]�; : : : ; [[�n]]�).
(3) An interpretation [[M ]]�;H of the term H `�M : � is a continuous section of the

functor [[H]]�)[[�]]� : (D
EP)m !DEP. It is de�ned inductively as follows:

(i) [[xi]]�;H = pi;n

(ii) [[�x : �:M ]]�;H = curry([[M ]]�;H;x : � )
(iii) [[��:M ]]�;H = Curry([[M ]]�;�;H)
(iv) [[M (N )]]�;H = apply([[N ]]�;H; [[M ]]�;H)
(v) [[Mf�g]]�;H = Apply([[M ]]�;H; [[� ]]�).
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Remark. A detailed inspection shows that these de�nitions really make sence, the only
problem is the case (iv). This is dealt with in the following lemma.

Lemma. (5.13) If � does not appear free in the type �, then

[[�]]�;� = [[�]]� �Fst(DEP)m;DEP:

Proof. By straightforward induction on �.

[[�i]]�;� = Pi;m+1 = [[�i]]� �Fst(DEP)m;DEP:

[[�! � ]]�;� = [[�]]�;�)[[� ]]�;�

= ([[�]]� � Fst(DEP)m;DEP))([[� ]]� �Fst(DEP)m;DEP)

= ([[�]]�)[[� ]]�) �Fst(DEP)m;DEP

= [[�! � ]]� � Fst(DEP)m;DEP

[[
Q
�:�]]�;�(X;Y ) =

Qm+1[[�]]�;�;�(X;Y )

=
Q
([[�]]�;�;�(X;Y;�))

=
Q
([[�]]�;�;�(X;�; Y )

=
Q
([[�]]�;� �Fst(DEP)m+1;DEP(X;�; Y ))

=
Q
([[�]]�;�(X;�))

=
Qm([[�]]�;�)(X)

=
Q
([[�]]�;�) �Fst(DEP)m;DEP(X;Y )

= [[�]]�;� �Fst(DEP)m;DEP(X;Y );

where the fourth line follows, for � 6= �, from the induction hypothesis and, for � = �, from
the fact that

[[�]]�;�;� = [[�]]�;� �Fst(DEP)m;DEP: �

Example. The interpretation of the type
Q
�:�! � is

[[
Q
�:�! �]] =

Q0([[�! �]]�)

=
Q
([[�]]�)[[�]]�)

=
Q
(P1;1)P1;1):

The polymorphic identity function is interpreted by the following continuous section ofQ
(P1;1)P1;1):

[[��:�x : �:x]] = Curry([[�x : �:x]]�)

= Curry(curry([[x]]�;x : �))

= Curry(curry(p1;1)):
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De�nition. We say that equation H �̀M = N : � is satis�ed under the given semantics if
[[M ]]�;H = [[N ]]�;H.

We now proceed to prove Soundness theorem. First we need some lemmas.

Lemma. (5.14) Given permutations f1; : : : ; ng = fi1; : : : ; ing and
f1; : : : ;mg = fj1; : : : ; jmg. Then

[[M ]]�1;:::;�m;x1 : �1;:::;xn : �n (X1;:::;Xm)(p1; : : : ; pn) =

= [[M ]]�j1;:::;�jm ;xi1 : �i1 ;:::;xin : �in (Xj1
;:::;Xjm )(pi1 ; : : : ; pin):

Proof. By structural induction on M. �

Lemma. (5.15) Suppose H �̀M1 : �1 and H;x : �1 �̀M2 : �2. Then

apply(curry([[M2]]�;H;x : �1 ); [[M1]]�;H) = [[[M1=x]M2]]�;H:

Proof. Let r = [[[M1=x]M2]]�;H , s = [[M2]]�;H;x : �1 and t = [[M1]]�;H. We want to show
that r = [t]s. We shall do it by structural induction on M2.

(1) M2 � x. Then r = t and [t]s = [t](pn+1;n+1) = t, so r = [t]s.
(2) M2 � xi. Then r = [[xi]]�;H = pi;n = [t](pi;n+1) = t.
(3) M2 � �y : �:M . Suppose that �2 = � ! � so that H; y : � �̀M : � . Then

r = [[�y : �:[M1=x]M ]]�;H

= curry([[[M1=x]M ]]�;H;y : �)

= curry([[[M1]]�;H;y : � ][[M ]]�;H;y : �;x : �1) (hyp)

= [t](curry([[M ]]�;H;x : �1;y : �)) (Lemmas 5.11.1 and 5.14)

= [t]s:

(4) M2 � ��:M . Suppose that �2 =
Q
�:� so that H �̀;�M : �. Then

r = [[��:[M1=x]M ]]�;H

= Curry([[[M1=x]M ]]�;�;H)

= Curry([[[M1]]�;�;H][[M ]]�;�;H;x : �1 ) (hyp)

= [t](Curry([[M ]]�;�;H;x : �1 )) (Lemmas 5.11.2 and 5.14)

= [t]s:

(5) M2 �M (N ). Suppose that H �̀M : � ! �2 and H �̀N : �. Then

r = [[([M1=x]M )([M1=x]N )]]�;H

= apply([[[M1=x]M ]]�;H; [[[M1=x]N ]]�;H)

= apply([t][[M ]]�;H;x : �1 ; [t][[N ]]�;H;x : �1 ) (hyp)

= [t](apply([[M ]]�;H;x : �1 ; [[N ]]�;H;x : �1 )) (Lemma 5.11.3)

= [t]s:
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(6) M2 �Mf�g. Suppose H �̀M : � . Then

r = [[([M1=x]M )f�g]]�;H

= Apply([[[M1=x]M ]]�;H; [[�]]�)

= Apply([t][[M ]]�;H;x : �1 ; [[�]]�) (hyp)

= [t](Apply([[M ]]�;H;x : �1 ; [[�]]�) (Lemma 5.11.4)

= [t]s: �

Lemma. (5.16) [[[�2=�]�1]]� = [[�1]]�;�� < Id(DEP)m ; [[�2]]� >.

Proof. By structural induction on �1. �

Lemma. (5.17) Suppose H `�;�M : �1 and � does not appear free in type of variable in
H. Then

Apply(Curry([[M ]]�;�;H)[[�2]]�) = [[[�2=�]M ]]�;H:

Proof. Let s = [[[�2=�]M ]]�;H, t = [[M ]]�;�;H and K = [[�2]]�. By structural induction on
M we show that s = [K]t.

(1) M � xi. Then [�=�]�1 = �1, and so s = [[xi]]�;H = pi;n = [K](pi;n+1) = [K]t:
(2) M � �y : �:N . Suppose that �1 = � ! � so that H �̀;�N : � . Then

s = [[�y : [�2=�]�:[�2=�]N ]]�;H

= curry([[[�2=�]N ]]�;H;y : [�2=�]�)

= curry([K][[N ]]�;�;H;y : �) (hyp)

= [K](curry([[N ]]�;�;H;y : �)) (Lemma 5.12.1)

= [K]t:

(3) M � ��:N . Suppose that �1 =
Q
�:� so that H �̀;�;�N : �. Then

s = [[��:[�2=�]N ]]�;H

= Curry([[[�2=�]N ]]�;�;H)

= Curry([K �Fst(DEP)m;DEP][[N ]]�;�;�;H) (hyp)

= [K](Curry([[N ]]�;�;H)) (Lemmas 5.12.2 and 5.14)

= [K]t:

(4) M � N1(N2). Suppose that H �̀;�N1 : � ! �1 so that H �̀;�N2 : �. Then

s = [[([�2=�]N1)([�2=�]N2)]]�;H

= apply([[[�2=�]N1]]�;H; [[[�2=�]N2]]�;H)

= apply([K][[N1]]�;�;H; [K][[N2]]�;�;H) (hyp)

= [K](apply([[N1]]�;�;H; [[N2]]�;�;H)) (Lemma 5.12.3)

= [K]t:
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(5) M � Nf�g. Suppose that �1 = [�=�1]� so that H �̀;�N :
Q
�1:� . Then

s = [[([�2=�]N )f[�2=�]�g]]�;H

= Apply([[[�2=�]N ]]�;H; [[[�2=�]�]]�)

= Apply([K][[N ]]�;�;H; [[[�2=�]�]]�) (hyp)

= Apply([K][[N ]]�;�;H; [[�]]�;�� < Id(DEP)m ;K >)) (Lemma 5.16)

= [K](Apply([[N ]]�;�;H; [[�]]�;�) (Lemma 5.12.4)

= [K]t: �

Lemma. (5.18) Suppose H �̀M : �1 ! �2. If x does not appear in H, then

[[M ]]�;H;x : �1 = [[M ]]�;H � fstn;1:

Proof. By structural induction on M . �

Lemma. (5.19) Suppose H �̀M : �. If � does not belong to �, then

[[M ]]�;�;H = [[M ]]�;H �Fst(DEP)m;DEP:

Proof. By structural induction on M . �

Now we �nally can prove the Soundness theorem:

Theorem. (5.20) (Soundness) Equational rules for second order lambda calculus are
satis�ed under the given interpretation.

Proof. Although there are eleven rules, the proofs of most of them are immediate. The
only non-trivial proofs are those of the rules �, type �, � and type �.

(1) � rule:
H;x : �1 �̀M : �2 H �̀N : �1

H �̀ (�x : �1:M )(N ) = [N=x]M : �2

This rule immediately follows from the lemma 5.15.
(2) type � rule:

H �̀;�M : �1

H �̀ (��:M )f�2g = [�2=�]M : [�2=�]�1

This rule immediately follows from the lemma 5.17.
(3) � rule:

H �̀M : �1 ! �2
H �̀�x : �1:M (x) =M : �1 ! �2
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where we have a restriction that x does not appear in H. We have

[[�x : �1:M (x)]]�;H = curry([[M (x)]]�;H;x : �1)

= curry(apply([[M ]]�;H;x : �1 ; sndn;1))

= curry(apply([[M ]]�;H � fstn;1; sndn;1)) (Lemma 5.18)

= [[M ]]�;H:

(4) type � rule:
H �̀M :

Q
�:�

H �̀��:Mf�g=M :
Q
�:�

where � does not appear in �. Then

[[��:Mf�g]]�;H

= Curry([[Mf�g]]�;�;H)

= Curry(Apply([[M ]]�;�;H; [[�]]�;�))

= Curry(Apply([[M ]]�;H � Fst(DEP)m;DEP;Snd(DEP)m;DEP)) (Lemma 5.19)

= [[M ]]�;H: �

Remarks.

(1) We have presented the model in a way which slightly di�ers from the general de�ni-
tion of a model given in section 4.2. If we want to present the model in the Seely's
formalization, we could proceed as follows. For the category S we take the category
of locally �nitely presentable categories (actually it would be enough to take the
category based on the natural numbers which we used in section 4.3). This is carte-
sian closed. Moreover the functors from one locally �nitely presentable category to
another (de�ned up to isomorphism) form a set (and a cartesian closed category).
The rest of the construction is the construction given in this chapter.

(2) For the construction was essential the fact that any Scott domain is a directed
colimit of �nite domains which embed into it - this follows from the fact that it is
algebraic. We also, of course, need the domain to be a cpo. So the only feature of
a Scott domain we didn't need is bounded completeness (and it is really possible to
perform this construction in the category of algebraic cpos).
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