
Shape Analysis

Milan Sekanina

August 1998

Ph.D. Thesis

University of Technology, Sydney

Certi�cate

I certify that this thesis has not already been submitted for any
degree and is not being submitted as part of candidature for any
other degree.

I also certify that the thesis has been written by me and that any
help that I have received in preparing this thesis, and all sources
used, have been acknowledged in this thesis.

Milan Sekanina

Acknowledgments

The following is an incomplete list of the people whom I owe a debt of
gratitude for helping me produce this thesis:

My supervisor, Barry Jay, who not only introduced me to shape theory,
helped me push my research along and taught me all I know about about
scienti�c writing, but went way beyond the call of his supervisorial duty by
trying to make my stay in Australia as trouble-free as possible.

My second supervisor, Jenny Edwards for patiently reading and correcting
numerous drafts of my thesis.

All the other people who through the years worked on shape at UTS and
helped me with their suggestions, especially Paul Steckler, Dave Clarke, and
Daniel Mahler.

The referees, including Chris Hankin and Eugenio Moggi, for their valuable
suggestions. E Moggi in particular had a major impact on the �nal structure
of the thesis by suggesting a shift in perspective which led to its considerable
simpli�cation.

And my family and friends for bearing with me when the going got harder.

i

Contents

1 Introduction 1

1.1 Semantics of shape . 3

1.2 Shape analysis . 5

1.2.1 Shape analysis and abstract interpretation 9

1.2.2 Shape analysis and data ow analysis 10

1.2.3 Shape analysis and partial evaluation 11

1.2.4 Shape analysis and two-level languages 12

1.2.5 Shape analysis and dependent types 12

1.3 Structure of the thesis . 13

2 The Size language 15

2.1 Typed Lambda Calculi . 15

2.1.1 Types and terms . 16

2.1.2 Manipulating terms . 19

2.1.3 Terms and equality . 25

2.1.4 Evaluating terms . 28

2.2 Extending the calculus . 31

2.2.1 Combinators . 31

2.2.2 Product type . 32

2.2.3 Unit . 33

2.2.4 Natural numbers . 33

ii

CONTENTS iii

2.2.5 Booleans and conditionals 34

2.2.6 Equality . 35

2.2.7 Recursion . 35

2.2.8 Errors . 37

2.3 The Size language . 37

3 The Vec language 51

3.1 Vectors and Arrays . 51

3.2 The Vec language . 53

3.3 Expressive power . 60

3.3.1 Array indexing . 60

3.3.2 Second order vector operations 62

3.3.3 Linear algebra . 63

4 Shape analysis 65

4.1 The shape translation . 66

4.2 Examples . 69

4.2.1 Vectors . 69

4.2.2 Array indexing . 70

4.2.3 Second order vector operations 70

4.2.4 Linear algebra . 71

4.3 Properties of shape analysis 71

5 Simplifying shapes 77

5.1 Size with checks . 78

5.2 Shape analysis with checks . 83

6 Extending shape analysis 88

6.1 Shapely operations . 88

6.2 Data conditionals . 91

6.3 Data polymorphism . 94

CONTENTS iv

6.4 Shape polymorphism . 95

7 Conclusions 97

A Proofs of conuence 107

A.1 Conuence of Size . 107

A.2 Conuence of Vec . 112

B Implementation 114

B.1 Shape analysis to Size . 114

B.2 Shape analysis to SizeC . 115

List of Figures

2.1 Typing judgments for the simply typed lambda calculus 18

2.2 Eager operational semantics of the simply typed calculus . . . 29

2.3 Size combinators and their types 39

2.4 Typing judgments for Size . 39

2.5 Base reductions for Size . 40

2.6 Operational semantics of Size 42

3.1 Typing of Vec combinators 54

3.2 Typing judgments for Vec . 56

3.3 Base reductions for Vec . 57

3.4 Operational semantics of Vec{ Part 1 57

3.5 Operational semantics of Vec{ Part 2 58

4.1 Shape translation of terms . 67

5.1 SizeC combinators and their types 78

5.2 Base reductions for SizeC . 80

5.3 Equality reductions in SizeC 81

5.4 Operational semantics of SizeC 82

5.5 Shape analysis in SizeC . 84

v

Abstract

Most data structures commonly supported by programming languages,
including arrays, lists and trees, can be split into two components { the
underlying structure (or the shape) and the data stored within. Though the
bene�ts of manipulating the data alone have been known for a long time
(as witnessed, for example, by the wide-spread use of data polymorphism),
only in recent years has greater attention been paid to the shape content as
well, primarily by groups studying areas such as intensional polymorphism
or polytypism. Shape theory, a part of this programme of work, uni�es the
various notions of shape under a single framework.

This thesis studies shape analysis, a branch of shape theory which ex-
tracts the shapes of data structures and uses them for program optimisation.
It concentrates on using shape analysis for detecting errors arising from ill
formed or incompatible shapes. A typical example of such shape errors might
be multiplying matrices of ill matched dimensions. Since shape analysis ig-
nores all data and data-based computations, it has a potential to be very
eÆcient, as well as completely safe error-checking method.

As a vehicle for this study, Vec, a simply typed lambda calculus support-
ing a vector type constructor (and thus arbitrary arrays), and its sublanguage
of shapes, Size, are introduced. Two kinds of shape analysis of Vec are then
de�ned. One maps a Vec term to its shape in Size, ignoring in the process
all data computations. Important properties of this shape translation are
then proved, especially its ability to detect all shape errors in a Vec term.
Later a di�erent kind of shape analysis is introduced, one suitable for a re-
stricted set of Vec terms and producing very simple shapes for some higher
order terms.

Chapter 1

Introduction

The use of the word \shape" is a common and familiar sight in phrases such
as \the shape of an array" (referring to an array's dimensions), \the shape
of a heap" (referring to the form of a heap-allocated data structure) or \the
shape of a system of linear equations" (referring to the pattern of non-zero
coeÆcients of such a system). These (and similar) examples form a very
diverse collection and, at the �rst glance, the only thing they seem to share
is that in each case the word \shape" refers to something vaguely endowed
with a physical form { a rectangular array, a triangular matrix, a circular list.
However, a deeper investigation reveals that they have more in common { in
all the examples, \the shape of a data structure" refers to a component of
the data structure, a component that can be looked upon as some underlying
structure with holes for storing the rest of the data structure, e.g. the array's
entries, the storage for the heap. One can thus separate the data structure
into two parts { its shape and the data stored within (since the number of the
data is typically �nite, we can view it as a list). Furthermore, any data entry
can be stored in any hole in the shape, and any such assignment produces
a well-formed data structure. Thus a matrix is given by a pair of sizes and
a list of entries (ordered in some implicit way), a �nite dimensional array is
determined by a list of sizes and a list of entries, a labeled tree is given by
an unlabeled one and a list of labels.

Of course, similar observations (though in isolated cases only) have been
made long ago and shapes have been used in some form or another since
the advent of programming languages. Arrays in some early languages such

1

CHAPTER 1. INTRODUCTION 2

as APL [Iverson, 1962] are constructed from a list of sizes and a list of en-
tries. Algorithms often use shape information for program optimisation.
However, until recently there has been no general theory unifying the vari-
ous notions of shape under a single framework. There have, of course, been
theories powerful enough to describe shape, such as dependent type theory
[Martin-L�of, 1984], but their focus lies more in areas such as theorem proving
than programming language design. Only in the last few years have language
design techniques treating and using shape (or its close approximations) in
a more general and uniform manner emerged. Some of this research falls
under the framework of the Bird-Meertens formalism [Meijer et al., 1991] {
such as the work on polytypic operations [Jeuring and Jansson, 1996], opera-
tions de�ned by induction on the structure of a datatype and thus applicable
to values of di�erent types (and shapes). The generic theory of datatypes de-
veloped by [Hoogendijk, 1997] has similar goals. Intensional polymorphism
[Harper and Morrisett, 1995] uses a type-based run time analysis to generate
eÆcient code. Shape theory, a recent addition to the extensive suite of lan-
guage design techniques, uni�es the various notions of shape under a single,
general framework.

The basic concept of shape theory, one capturing the core characteristics
of shapes in the above examples, is that of shapely datatype, a concept orig-
inally coming from categorical semantics of programming languages. Shape
theory and its implications for programming language design are now be-
ing intensely studied (primarily by the Algorithms and Languages Group at
University of Technology in Sydney) but many potential applications remain
largely unexplored. The two branches of shape theory studied so far are
shape polymorphism and shape analysis. These are, up to a point, orthog-
onal methods, but their underlying principles remain the same { they both
strive to shift the responsibility for shape computation onto the compiler,
thus, in e�ect, turning shapes into compile time entities. We will talk about
them and their implications for language design in a greater detail shortly,
but before we do, it might be useful to present the basic concepts of the
categorical semantics of shape as it helps to understand our motivations.
However, an e�ort has been made to keep the exposure to category theory
to a minimum.

CHAPTER 1. INTRODUCTION 3

1.1 Semantics of shape

This section will introduce the theoretical concepts underlying shape the-
ory. The full details can be found in [Jay, 1995] or [Jay, 1994]. The cat-
egory theory needed is elementary; the de�nitions of all the notions unex-
plained here can be found in any introductory text on category theory such
as [Barr and Wells, 1990] or [Asperti and Longo, 1991].

In a categorical semantics, types are typically represented by objects and
terms by arrows in a suitable category C. Datatype constructors, such as the
matrix type constructor, then correspond to functors over C. So let us assume
we have a functor F : C ! C and an object � such that F � represents a
type. The operations extracting the data list and the shape from F � (when
they exist) have the form

data : F � ! L �
shape : F � ! shapes

with shapes being the type of shapes of F � and L : C ! C the list functor.

Conversely, any list of �'s together with a shape determine a unique
structure of type F �, provided the number of \holes" in the shape (its
arity) matches the length of the list. This is just another way of saying that
the following square is a pullback:

F �
data - L �

shapes

shape

?

arity
- nat

?

length

(where nat is the natural numbers object). The above diagram exactly cap-
tures the data/shape partitioning of F �.

For a concrete example, let us consider matrices of integers, with the

CHAPTER 1. INTRODUCTION 4

matrix functor being M : C ! C. The pullback then has the following form

M int
data- L int

nat� nat

shape

?

�
- nat

?

length

with * representing the multiplication of natural numbers.

The challenge now is to describe the shapes object and the operations
shape and arity in a general way. To do that, we make several observations.
Firstly, natural numbers can be viewed as lists of units (and vice versa). This
is reected in the fact that, in any suitable category, the objects nat and L 1

are isomorphic (where 1 is the terminal object, an object with a single value,
thus carrying no information). Secondly, the shape of a data structure can
be thought of as the structure itself with all the data replaced by units
(representing the holes). Thus shapes should be F 1 and the shape arrow
is just F ! (where ! is the unique arrow into the terminal object). This is
consistent with the matrix case above since the objects nat � nat and M 1

are isomorphic. Finally, the operation arity can be thought of simply as
another data operation, returning the list of \data" in the shape, with the
data now being the terminal objects. When we apply these observations to
the pullback diagram above, we get the following diagram

F int
dataint- L int

F 1

F !

?

data1
- L 1

?

L !

Functors for which there exists a family of such arrows data (satisfying some
naturality conditions) are shapely over lists [Jay, 1995]. Thus such functors
correspond to those datatype constructors that can be split into the shape
and data in the way discussed above. Of course, not all type constructors are

CHAPTER 1. INTRODUCTION 5

shapely { function types, for example, are not typically shapely, and neither
are types of sets.

1.2 Shape analysis

An important branch of shape theory, one that has been intensely studied, is
shape polymorphism [Jay and Cockett, 1994]. Shape polymorphism allows a
function to be uniformly applied to structures with various shapes. Let us
consider, for example, mapping a function across a data structure. Whether
a function is being mapped over a list or a tree, the overall speci�cation
remains the same { go through all the data and apply the function to each.
The challenge is then to uniformly describe the type and/or the algorithm
for map. In a shape polymorphic type system, the type of map (and the
algorithm for its application) is parametric in the choice of the (shapely)
datatype constructor, thus covering all the cases mentioned above. The FML
language (standing for Functorial ML) is an extension of ML supporting
shape polymorphism [Bell�e et al., 1996].

Evaluating shapes and using the derived shape information before access-
ing any data is the domain of shape analysis, another branch of shape theory,
one with perhaps even greater potential bene�ts than shape polymorphism.
Shape analysis has not yet been extensively studied and this thesis will try
to contribute to the understanding of the processes involved.

When it is possible to extract the shape prior to the actual data com-
putation, one can then pro�t from the early use of the shape information.
The potential bene�ts are manifold, ranging from speeding up the program's
performance and improved memory allocation to error detection. Error de-
tection will be the main focus of this thesis, but let us �rst illustrate the
practical importance of shape-based optimisations. Consider, for example,
the problem of multiplying several matrices. Since matrix multiplication
is associative, the chosen order of multiplication does not a�ect the result,
but it does have a great impact on the number of (integer) multiplications
needed. This optimal matrix-parenthesization problem [Cormen et al., 1990]
is a shape-based optimisation which is an essential part of any eÆcient ma-
trix multiplication algorithm. Many other examples can be found { solving
a sparse system of linear equations often involves reordering the system so as

CHAPTER 1. INTRODUCTION 6

to minimise the number of non-zero coeÆcients appearing during the solving
phase, an optimisation that is based purely on the sparsity pattern, i.e. the
shape, of the system [Du� et al., 1986]. In practice, many such algorithms
(and in particular both the examples mentioned above) are optimised with
respect to one shape and then applied to several systems with the same shape
but di�erent data, thus further stressing the signi�cance of such shape-based
optimisations.

Shape analysis might also have a big impact in the world of parallel com-
puting, primarily in areas such as load balancing, since both the sizes of data
structures and the associated communication patterns often depend solely on
shapes. The �nite element method for solving partial di�erential equations
over a discretised domain is a case in point { when dividing the task across
processors, one has to carve a graph representing the domain into pieces of
similar size while cutting through as few edges (representing the necessary
communication links) as possible [Kumar et al., 1994]. Another important
application is deriving static estimates of program execution costs. Execu-
tion costs are often primarily shape-dependent since the bulk of the execution
time of, say, an array program depends on the sizes of the array, not on its
entries, and consequently a number of cost estimating techniques relying
on shape information have been developed. Skillicorn's cost calculus for a
skeleton-based language [Skillicorn, 1994] is an example of such (informal)
use of shape. Inferring the lengths (i.e. the shapes) of vectors is the basis
for size inference [Blelloch et al., 1991], a technique used for deriving eÆ-
cient parallel implementations of Nesl [Blelloch, 1992]. Similar estimates of
variable sizes are used in [Ching, 1986] for compiling APL.

We have used shape analysis similar to the one presented in this thesis
to infer static estimates of execution costs of array based programs in the
PRAM setting [Jay et al., 1997]. The system has been implemented and
shown to provide accurate estimates.

FISh, an Algol-like language heavily relying on the ideas of shape is cur-
rently being developed [Jay and Steckler, 1998]. FISh supports a high-level
programming style similar to that typical of functional languages while using
shape analysis to generate very fast and memory-eÆcient code. For example,
shape analysis in FISh is used to avoid unnecessary boxing of array entries.

Let us now consider error detection. This has, of course, long been an
intensely studied area. Introduction of types and automatic type checking

CHAPTER 1. INTRODUCTION 7

(and type inference) have been largely motivated by the desire to eliminate
certain kinds of errors (type errors). In a similar vein, we propose shape
analysis as a means for identifying shape errors [Jay and Sekanina, 1997],
errors arising from working with ill-formed or incompatible shapes. Examples
include zipping together two lists of di�erent lengths or multiplying matrices
of ill-matched sizes. Perhaps even more importantly, array access errors, i.e.
accessing an out-of-bounds array entry, fall into the same category.

For shape analysis to be successful, it is necessary for the analysed oper-
ations to satisfy an important restriction: all shapes involved must depend
solely on the shapes of the inputs (they have to be shapely operations). Thus
shape analysis can analyse (and detect errors in), say, matrix multiplication
{ here the sizes of the resulting matrix are determined by the sizes of the two
input matrices. On the other hand, shape analysis cannot handle operations
such as �ltering of a list, where the length of the result depends not only
on the length (the shape) of the input but also on its entries (data). The
potential signi�cance of shape analysis thus depends on the proportion of
shapely operations in real-world computing. Fortunately, it turns out that
many algorithms and operations used in practice, particularly in areas such
as array-based computations and linear algebra, are, indeed, shapely { ex-
amples include operations such as the scalar multiplication of vectors and
Gaussian elimination. However, shape analysis can be of use even when
shapely operations are intermixed with non-shapely ones { in such cases one
could interleave shape analysis of the shapely parts with direct evaluation of
the rest, as suggested in [Jay, 1996]. This topic will not be addressed in this
thesis, though.

We will study shape analysis primarily in the context of arrays and array-
based computations. As a vehicle for this study, we introduce Vec, a simple
language supporting vectors. The overriding concern in its design was to
ensure that shape analysis is able to analyse all Vec programs, and therefore
that only shapely operations are expressible in it. Vec is based on the simply
typed lambda calculus, with its type system given by

Æ ::= nat j bool j : : :
� ::= Æ j un j sz j � � � j vec �
� ::= � j � � � j � ! � :

Here Æ ranges over datum types such as natural numbers and booleans, types

CHAPTER 1. INTRODUCTION 8

having no (or, rather, trivial) shape content. The strati�cation between data
types � and phrase types � prevents formation of types such as vectors of
functions which are undesirable for technical reasons { rather than storing
terms of such types sequentially in computer memory (as one would other
vectors and arrays), one would have to employ something like arrays of point-
ers which are both slow and diÆcult to analyze. Finite dimensional arrays
can be represented in Vec by nesting the vector type constructor vec { shape
analysis will ensure that all entries in a vector have the same length and that
nested vectors are thus, indeed, arrays. The emphasis on shapely operations
has lead to some novel design decisions such as the introduction of the type
of sizes sz, the shape equivalent of natural numbers used as vector lengths.
Shape errors, such as array access errors, are made explicit in the syntax of
Vec by introducing the error combinator err.

The shapes of Vec terms are isolated in its sublanguage Size. The Size
type system is simpler than that of Vec, as it involves neither datum nor
vector types:

� ::= un j sz j � � � j � ! � :

We will study two kinds of shape analysis on Vec, each suited to a di�erent
kind of problem. First we introduce a very general analysis, applicable to a
wide range of programs, as a mapping from terms in Vec to their shapes in
Size. We will show that this shape analysis does indeed produce the shapes
it should and, in particular, that it detects all shape errors (including array
access errors) in a Vec program. Later we introduce a di�erent kind of
shape analysis, suitable for a restricted set of Vec programs that produces
very simple shapes of some higher-order terms.

Since shape is a fairly simple and ubiquitous notion, it comes as no sur-
prise that there is a considerable amount of related material, though none is
as general as what we propose. Shape analysis itself is closely related to sev-
eral existing methods such as abstract interpretation or partial evaluation.
The rest of this section will thus discuss the relationships between shape
analysis and various existing methods, namely abstract interpretation, data
ow analysis, partial evaluation, two-level languages and dependent types.

CHAPTER 1. INTRODUCTION 9

1.2.1 Shape analysis and abstract interpretation

Abstract interpretation [Cousot and Cousot, 1979] is a semantics-based
method of static program analysis that studies the (at compile time typi-
cally uncomputable) run-time behaviour of programs by concentrating only
on the (statically computable) properties of interest. The general mechanism
is captured in the following diagram

Domains
standard interpretation - Domains

Abstract domains
?

abstraction

abstract interpretation
- Abstract domains

concretization

6

(here Domains and Abstract domains are generic terms representing the
suitable semantics which may vary according to the type of the analysed
program, be it functional, declarative, parallel or so on). Thus one abstracts
from the standard semantics of a program, analyses it using abstract inter-
pretation and then gets back the concrete representation. As the abstract
representation does not capture the whole of the standard semantics, the
above diagram does not quite commute { the requirement is for the analy-
sis to be \safe", that is the concretised abstract domain has to be \at least
as general" as the original one (again, the formal de�nitions vary). A de-
tailed description of abstract interpretation can be found in, for example,
[Abramsky and Hankin (editors), 1987] or [Jones and Nielson, 1992].

Abstract interpretation provides a very general framework for various
program analyses and, up to a point, we can view shape analysis in this light
as well { in our case abstraction would correspond to shape extraction,
abstract interpretation to shape manipulation (computation of the re-
sulting shapes and detection of eventual errors) and concretization would
map a shape to the set of terms with this shape. Even the safety condition has
an analog in the main claim about shape analysis (stated in Theorem 4.3.4)
which says that shape analysis of a program detects all shape errors, but may
\detect an error" when in fact there is none.

CHAPTER 1. INTRODUCTION 10

Abstract interpretation (together with data ow analysis discussed be-
low) is the framework for an extensive body of work on array access checking,
an area of particular interest to us. Since, in general, it is not possible to
detect at compile-time whether all array accesses are within bounds, run-
time checks have to be performed (or one runs the risk of corrupting the
memory). In programs involving a large number of array accesses, these
checks can considerably slow down the program's execution and devising
eÆcient optimisation techniques for such programs thus becomes essential.
Abstract interpretation based techniques concentrate on estimating the val-
ues integer variables can take (as these are used as array indices) and use
these estimates to identify the redundant checks. Typically these potential
values are expressed as intervals (or ranges, hence range check optimiza-
tion { see, for example, [Cousot and Halbwachs, 1978]). The inference rules
vary in their sophistication as one has to balance the bene�ts resulting from
more complex analyses against the higher costs these incur in terms of spent
computing time and power. Thus analyses range from the relatively simple
ones [Harrison, 1977] to ones that use full-blown theorem provers (such as
[Suzuki and Ishihata, 1977]) and are thus probably too complicated for prac-
tical use. Some of the simpler analyses have long been used in optimising
compilers { see, for example, [Markstein et al., 1982] for the implementation
of array range checker in the IBM PL.8 compiler.

It is important to note that shape analysis does not directly compete
with these methods as its premises are slightly di�erent. We have already
said that we will treat shapes as information available to us during shape
analysis, something that typically is not true of the methods described above.
As well, our restriction to shapely programs will allow us to detect all array
access errors.

1.2.2 Shape analysis and data ow analysis

Data ow analysis [Aho et al., 1986] is a generic term covering a wide range
of program-transformation techniques such as constant folding or dead-code
elimination. The common theme of all these techniques is that they base their
transformations on information about the data (and control) ow of a pro-
gram. Data-ow based optimising techniques can be found in every optimis-
ing compiler. There is an enormous body of work on data-ow analysis and

CHAPTER 1. INTRODUCTION 11

a considerable proportion of it can be viewed as working with shape in some
form (especially with the shapes of arrays, as array programs are, understand-
ably, the subject of much attention { see, for example, [Feautrier, 1991]).

An important application is data-ow analysis of array access checks. A
number of such techniques has been studied (a useful comparison of the bene-
�ts of various optimising techniques can be found in [Kolte and Wolfe, 1995]).
The most commonly used techniques (and those most bene�cial) are check
elimination and propagation of checks out of loops [Gupta, 1993]. Other
transformation techniques, more expensive but potentially producing better
optimizations, such as conservative expression substitution and loop guard
elimination, are described in [Asuru, 1992].

Understandably, techniques working with shapes of arrays are much more
common than those working with more complex shapes. Pointer analysis of
heap-allocated storage (also known as \shape analysis" [Sagiv et al., 1996]) is
a rare example of the latter. It uses data ow-based analysis to estimate the
shapes (represented by pointers) heap-allocated data structures can take. Its
goal is not primarily to estimate the sizes of these shapes, but rather the form
they can take { be it a list, a circular list, a tree or so on. These estimates
are then used for generating eÆcient implementations, both sequential and
parallel.

1.2.3 Shape analysis and partial evaluation

Partial evaluation [Jones et al., 1993] is a program transformation technique
that specialises programs with respect to some (or some parts of) their in-
puts. Understandably, such a specialisation can signi�cantly speed up the
program's execution. Its applications are manifold, ranging from compiler
generation to pattern matching.

Shape analysis can also be seen as a special kind of partial evaluation, one
where programs are specialised with respect to the shapes of their inputs.
To make this specialisation possible, it has to be possible to separate, at
the syntactic level, shapes and data. Moreover the parts of the program
that are only shape-dependent have to be identi�ed (a form of binding time
analysis). As we have already mentioned, in this thesis we will concentrate
on shape analysis of shapely programs, that is programs where all shapes can

CHAPTER 1. INTRODUCTION 12

be determined once the input shapes are given. On the other hand, shape
analysis will not try to evaluate any data, even though some may also be
only shape-dependent (and would thus probably be evaluated by standard
partial evaluation techniques).

We expect that some of the major practical applications of shape analysis
will be in the area of partial evaluation. For example, we have already de-
scribed several algorithms (matrix parenthesization, �nite element method)
that use shape information for optimisations, and such optimisations are
again a form of shape-based partial evaluation. Partial evaluation has already
been used for similar tasks { specialising an algorithm solving sparse systems
of linear equations to a given sparsity pattern [Gustavson et al., 1970], or
specialising a ray-tracing program to a given scene [Mogensen, 1986].

1.2.4 Shape analysis and two-level languages

Partial evaluation is closely linked to the theory of two (and higher) level lan-
guages [Nielson and Nielson, 1992]. In such a language, terms are annotated
with additional binding time information which, in two-level languages, cor-
responds to the distinction between compile-time (static) and run-time (dy-
namic) entities. Not every binding time annotation is, of course, valid { for
example, a run-time function should not return a compile-time value. The
rules ensuring valid annotations are the equivalent of binding time analysis
in partial evaluation.

Again, shape analysis is closely connected with the theory of two-level
languages. Since shape analysis computes shapes prior to working with the
data, shapes can be viewed as the static, and data as the dynamic entities in a
language. A two-level language supporting the shapes of nested sequences (a
generalisation of arrays) was introduced in [Bell�e and Moggi, 1997] and used
for shape analysis of the Nested Sequence Calculus [Suciu and Tannen, 1994].

1.2.5 Shape analysis and dependent types

A dependent type [Martin-L�of, 1984] is a type whose value depends on the
value of a term. Such type systems are very powerful { one can express, say,

CHAPTER 1. INTRODUCTION 13

the type of vectors of length at least n as

vec�n X =
X
8m�n

Xm

that is, as the sum of all vectors of length at least n. Dependent types blur
the distinction between compile time and run time as types (typically compile
time entities) may depend on the result of a term (run time) computation.
One of the consequences is that, in general, type checking (and type inference)
for such systems is undecidable.

We can formulate shape analysis as the type checking problem for a suit-
able dependent type system. Let us recall that, for any shapely type con-
structor F we have a type of shapes S (given by the object F 1 from the
pullback diagram from Section 1.1). Then a type F X can be expressed as

F X =
X
8s:S

Xarity(s) :

In other words, F X is the sum of arity(s) copies of X (representing the
data) over all shapes s. Shape analysis then becomes equivalent to type
checking for such a system. As we have already said, in general this is
an undecidable problem and the challenge is therefore to come up with a
system powerful enough to be interesting but allowing static type checking.
These points can be reconciled and there is a number of languages based on
dependent types (see, for example, [Bell�e and Moggi, 1997]).

Closely related to the work presented in this thesis is the research outlined
in [Xi and Pfenning, 1997], where an extension of ML with a restricted form
of dependent types allowing static type checking is used for eliminating array
bound checks. This research is still in its early stages and detailed results
are not yet available.

1.3 Structure of the thesis

The structure of the thesis is as follows:

� In the following chapter we introduce Size, and take this opportunity
to review the relevant notions from the theory of the simply-typed
lambda calculus.

CHAPTER 1. INTRODUCTION 14

� In Chapter 3 we then introduce Vec, a programming language based
on Size and supporting a vector-type constructor.

� In Chapter 4 we then de�ne shape analysis as a translation from Vec

to Size and prove some of its properties.

� In Chapter 5 we introduce a di�erent kind of shape analysis, again as
a translation from Vec to (a variant of) Size.

� In Chapter 6 we investigate ways of extending shape analysis to other
language constructs and features, such as data conditionals and poly-
morphism.

� Finally, in Chapter 7 we summarize the work and draw conclusions.

The systems and techniques described in this thesis have been imple-
mented in Standard ML and the implementation is freely available. The
details on downloading and descriptions of the systems can be found in Ap-
pendix B.

Chapter 2

The Size language

This chapter introduces Size, a functional language based on the simply
typed lambda calculus with �nite products and the type of natural numbers.
As we shall see in the following chapters, Size will be the target language
for the shape analysis of a vector-based language, Vec, and it is constructed
with this purpose in mind. The chapter consists of three sections. In the
�rst section we review the relevant aspects of typed lambda calculi, mainly
in order to standardise notation used later in the thesis. The second section
discusses some extensions of the core calculus, those that will be used in
the de�nitions of Size and, in the next chapter, of Vec. Finally, the third
section introduces the Size language itself. The material in the �rst two
sections is quite standard, and most of it can be found in any reference on
lambda calculus, such as [Barendregt, 1984] and [Hindley and Seldin, 1986]
for the untyped version, and [Lambek and Scott, 1986], [Girard et al., 1989]
or [Barendregt, 1992] for typed systems.

2.1 Typed Lambda Calculi

The main idea behind lambda calculus is that of function abstraction and
application. If a function f is de�ned by some expression t whose value
depends on the argument x

f : x 7! t[x] ;

15

CHAPTER 2. THE SIZE LANGUAGE 16

then we can abstract over x to get the lambda term �x:t denoting the function
f . When we want to apply f to an argument t0, notation f t0, we have to
substitute t0 for x into the expression t. This process is reected in the basic
equational rule of lambda calculus, � equality:

(�x:t) t0 = t[t0=x] :

Starting from this tenet, we can build a formal calculus of functions, the (un-
typed) lambda calculus. This calculus is at the foundations of all functional
languages.

2.1.1 Types and terms

Typed lambda calculus was �rst introduced in [Curry, 1934] and
[Church, 1940] as a restriction of the untyped version where only terms for
which a valid type can be inferred are considered legal. The two approaches,
Curry's and Church's, though equivalent in their expressive power, have dif-
ferent avours: the terms of a lambda calculus �a la Curry are the terms of
the untyped lambda calculus, and each such term has an associated set of
possible types (which may be empty), while the terms of a lambda calculus
�a la Church are annotated with types and one can derive the type of the
term from the annotations within the term. The rest of this chapter will
concentrate on lambda calculi �a la Church, but all of the material can be
presented in Curry's style as well.

De�nition 2.1.1 The types of the simply typed lambda calculus (over a set
Base of base types) are given by the following grammar

� ::= Æ j � ! �

where Æ 2 Base is a base type. Types will be denoted by lowercase Greek
letters.

Intuitively, the type �1 ! �2 is the type of functions from �1 to �2
(sometimes called the exponential type and denoted ��12). The operator !
is right-associative, so the expression �1 ! �2 ! �3 is parsed as �1 ! (�2 !
�3).

CHAPTER 2. THE SIZE LANGUAGE 17

As we mentioned above, terms presented in Church's style should be
annotated with their types. However, it turns out that it is only necessary
to annotate those variables that are being abstracted over { the types of the
remaining term constructs can then be inferred, and are unique (in a given
typing context, see below). This is reected in the syntax of the terms.

In the following we shall suppose that we are given a (countably large)
set Var of variables. The terms of the calculus are de�ned as follows.

De�nition 2.1.2 The set of raw terms t is given by the following grammar

t ::= x� j �x�:t j t t

where is a type, and x 2 Var a variable.

Remarks

1. We shall be using letters from the end of the alphabet, such as x, y,
and z to denote arbitrary variables; f and g to denote variables of
(typically) function types; t, u, and v to denote arbitrary terms.

2. In the term x� � is the type of the variable x. The type superscript
may be omitted when appropriate.

3. The term �x�:t is called an abstraction. As above, � is the type of x
and may be omitted. The scope of �x� in �x�:t is t. We may sometimes
omit successive �'s and write �x; y:t instead of �x:�y:t.

4. The term t1 t2 is an application. Application associates to the left, i.e.
t1 t2 t3 is parsed as (t1 t2) t3.

5. In following proofs, we shall often use induction on the complexity rank
of a term t. This is de�ned as follows { the complexity rank of a variable
is one, the complexity rank of an abstraction �x:t being one plus the
complexity of t and the complexity rank of an application being one
plus the sum of the ranks of the two subterms. We may also refer to
this induction as the induction on the structural complexity of t.

6. Symbol � will denote the syntactic equality, both on types and terms.

CHAPTER 2. THE SIZE LANGUAGE 18

De�nition 2.1.3 A typing context � is an assignment fx1 : �1; : : : ; xn : �ng
of types to a �nite set of variables (with no variable xi occurring twice).
We put Dom(�) = fx1; : : : ; xng. If � is the context fx1 : �1; : : : ; xn : �ng,
then �; x : � denotes the context fx1 : �1; : : : ; xn : �n; x : �g (provided
x 62 Dom(�)). We say that in a context � a raw term t has a type � if the
judgment � ` t : � is derivable from the rules given in Fig 2.1.

Variable x : � ` x� : �

Weakening
� ` t : � x 62 Dom(�)

�; x : �0 ` t : �

Abs
�; x : � ` t : �0

� ` �x�:t : � ! �0

App
� ` t : �0 ! � � ` t0 : �0

� ` t t0 : �

Figure 2.1: Typing judgments for the simply typed lambda calculus

Remarks

1. When � = fg is the empty typing context, we may write ` t : � instead
of � ` t : �.

2. The derivation of � ` t : � can be viewed as a tree. Similarly, deriva-
tions in other formal systems introduced later in this thesis can be
looked at as trees. Since various characteristics of such trees can (and
will) be used as induction ranks, it might be useful to clarify the ter-
minology. The height of a tree is the length of its longest branch. The
complexity of a tree is one plus the sum of the complexities of all its
immediate subtrees, with the complexity of a leaf being one.

De�nition 2.1.4 A raw term t is legal if there exists a typing context � and
a type � such that

� ` t : � :

CHAPTER 2. THE SIZE LANGUAGE 19

The following shows that a raw term has at most one type in a given
typing context, thus justifying our decision to restrict type annotations to
variables in abstractions.

Lemma 2.1.5 Let t be a raw term. If � ` t : �0 and � ` t : �1, then
�0 � �1.

Proof. The proofs of most of the lemmas in this section are simple inductive
proofs, and we shall omit most of them. We prove this lemma for illustration.
The proof proceeds by induction on the structure of t.

1. If t � x then both x : �0 2 � and x : �1 2 �. But since a variable has
at most one type in a given typing context, �0 � �1.

2. If t � �x� :t0 then the last step in the derivation of � ` t : �0 had to be

�; x : � ` t0 : �00
� ` �x� :t0 : � ! �00

where �0 � � ! �00 for some type �00. Similarly �1 � � ! �01 where
�; x : � ` t0 : �01. We now apply induction hypothesis to t0 to get
�00 � �01 and therefore also �0 � �1.

3. If t � t1 t2 then � ` t1 : �0 ! �0 for some �0, and � ` t1 : �1 ! �1 for
some �1. By applying the induction hypothesis to t1 we get �0 ! �0 �
�1 ! �1 and thus �0 � �1.

2.1.2 Manipulating terms

We now de�ne the sets of occurrences and subterms of a term (for a formal
de�nition of occurrences see e.g. [Dershowitz and Jouannaud, 1990]). We
need the following lemma to ensure that De�nition 2.1.7 makes sense.

Lemma 2.1.6 A subterm of a legal term is legal.

Proof. By induction on the structure of the term.

CHAPTER 2. THE SIZE LANGUAGE 20

De�nition 2.1.7 The set of occurrences of a (raw) term t is the set O(t) of
sequences of natural numbers de�ned inductively as follows

� If t is a variable, then O(t) = feg where e is the empty sequence.

� If t � �x:t0 is an abstraction, then O(t) = feg[f1 �s; s 2 O(t0)g where
� represents concatenation.

� If t � t1 t2 is an application, then O(t) = feg [fi � s; s 2 O(ti); i 2
f1; 2gg.

The subterm of t at occurrence s, denoted tjs, is, for s 2 O(t), given
inductively by

tje = t
�x:t0j1�s = t0js
(t1 t2)ji�s = tijs; i 2 f1; 2g

and it is unde�ned otherwise.

If tjs = t0, we also say that s indexes t0 in t.

The operation of subterm replacement is de�ned below.

De�nition 2.1.8 The operation of replacing a subterm of t at an occurrence
s by a term u (notation t[u]s) is de�ned for s 2 O(t) by

t[u]e = u
�x:t0[u]1�s = �x:t0[u]s

(t1 t2)[u]1�s = t1[u]s t2
(t1 t2)[u]2�s = t1 t2[u]s

and it is unde�ned otherwise.

The previous de�nition leads to the de�nition of a context (see, for ex-
ample, [Barendregt, 1984]), a structure we will occasionally need:

CHAPTER 2. THE SIZE LANGUAGE 21

De�nition 2.1.9 Let � be a type. The set of raw contexts C with holes of
type � is given by the following grammar

C ::= x j 2� j �x� :C j C C

where x is a variable and � a type.

We can extend the type inference mechanism for raw terms to raw con-
texts in the obvious way, with the type of 2� being �. A context is then a raw
context for which a type can be inferred. Contexts are thus, in e�ect, legal
terms containing occurrences of the symbol 2� (called simply \the hole").

Remarks

1. We shall use capital roman letters, mostly C, to denote contexts. We
may sometimes write C[]� to indicate that C is a context with holes
of type �.

2. Note that a context as de�ned above may contain more than one hole {
this is the way contexts are de�ned in, for example, [Barendregt, 1984].
Other authors, such as [Klop, 1992], prefer contexts with a single hole
only.

3. Since there will not be any chance of confusion, we shall extend � to
denote the syntactic equality of contexts. Also, we de�ne the notion of
an occurrence of a subcontext in a (raw) context, analogously to the
operation on (raw) terms.

We will use C[t] to denote the term resulting from replacing all occur-
rences of 2 in a context C by a term t (using the operation of subterm
replacement de�ned above).

Lemma 2.1.10 Let C[]� be a context, t a term, and let � ` C : � and
� ` t : �. Then

� ` C[t] : � :

Proof. By induction on the height of the derivation of � ` C : � .

CHAPTER 2. THE SIZE LANGUAGE 22

De�nition 2.1.11 An occurrence s indexing a variable x in a term t is free
if there is no pre�x s0 of s indexing a term of the form �x�:t0. The occurrence
s is bound otherwise. A variable is free in a term if it occurs free in it. A
term with no free variables is closed.

In other words, an occurrence of a variable x is bound if it is in the scope
of some �x�. The set of free variables of t is denoted FV (t). Similarly we
de�ne the set of free variables of a context C.

Note that the operation of hole replacement de�ned on contexts can cap-
ture free variables, that is, if x occurs free in t, then its corresponding occur-
rence in C[t] may be bound.

The following lemma describes the relationship between free variables in
a term and valid typing contexts.

Lemma 2.1.12 If � ` t : �, then FV (t) � Dom(�). Moreover, there exists
a context �0 such that Dom(�0) = FV (t) and �0 ` t : �.

Proof. By induction on the height of the judgment derivation.

In particular, if t is closed and has a type � under some typing context
�, then ` t : �. It therefore makes sense to talk about the type of a closed
term without mentioning any typing context.

Before we can introduce substitution, we have to address the complica-
tions arising from �-equivalence. If we think of a lambda abstraction as
de�ning a function, then the name of the formal parameter, i.e. the variable
used in the abstraction, is irrelevant. We thus want to work with terms \up to
the renaming of bound variables", or, in other words, \up to �-equivalence".
Two approaches can be taken: either we introduce � conversion as a special
rewrite rule on the set of terms, or we can identify �-equivalent terms at the
syntactic level. We will opt for the latter approach, and the formal treatment
is given below.

De�nition 2.1.13 The �-equivalence relation �� is the congruence on the
set of raw terms generated by the rule

�x�:t �� �y�:t0

CHAPTER 2. THE SIZE LANGUAGE 23

where y 62 FV (t) and t0 is the term resulting from replacing every free oc-
currence of x in t by y.

Lemma 2.1.14 shows that a term �-equivalent to a legal term is legal.

Lemma 2.1.14 If � ` t : � and t �� t
0, then � ` t0 : �.

Proof. By induction on the judgment derivation.

The previous lemma justi�es the following de�nition.

De�nition 2.1.15 An untyped term is an equivalence class under ��. A
term is an untyped term consisting of legal terms.

In the following, we shall write t � t0 to indicate that t and t0 represent the
same term (or the same untyped term), i.e. they are in the same equivalence
class under ��. It is useful to note that �� is decidable.

Even though terms are now whole equivalence classes, we shall typically
work with individual representatives of these classes. The formal approach
requires us to prove that de�nitions and theorems stated in terms of these
representatives do not depend on how they were chosen. However, since such
proofs are typically straightforward, we shall omit them.

De�nition 2.1.16 If t and t0 are untyped terms, and x a variable, then the
result of substituting t0 for x in t, denoted t[t0=x], is given inductively by

� x[t0=x] � t0.

� y[t0=x] � y where x 6� y.

� (�x:t1)[t
0=x] � �x:t1.

� (�y�:t1)[t
0=x] � �y�:t1[t

0=x] where x 6� y and y 62 FV (t0).

� (�y�:t1)[t
0=x] � �z�:(t1[z=y])[t

0=x] where x 6� y, y 2 FV (t0) and z 62
FV (t1) [FV (t0).

� (t1 t2)[t
0=x] � t1[t

0=x] t2[t
0=x].

CHAPTER 2. THE SIZE LANGUAGE 24

Note that the de�nition above does not make sense unless we work with
terms up to �-equivalence, since, in the �fth clause above, the variable z is
not determined by the rule and can be any fresh variable.

The following lemma shows that substituting legal terms for variables of
the proper type into legal terms results again in legal terms.

Lemma 2.1.17 If �; x : �0 ` t : � and � ` t0 : �0, then � ` t[t0=x] : �.

Proof. By induction on the derivation of �; x : �0 ` t : �.

Lemma 2.1.18 (Substitution lemma). Let t; t0 and t00 be untyped terms,
x and y variables, such that x 6� y and x 62 FV (t00). Then

t[t0=x][t00=y] � t[t00=y][t0[t00=y]=x] :

Proof. By induction on the structure of t.

The previous lemma shows that, under certain conditions, the order of
substitutions is irrelevant. This ensures that the following de�nition makes
sense.

De�nition 2.1.19 Let x1; : : : ; xn be a list of variables with no variable oc-
curring twice, and t1; : : : ; tn a list of closed terms. A substitution S = fx1 7!
t1; : : : ; xn 7! tng is a mapping from untyped terms to untyped terms given
by

S(t) � t[t1=x1] : : : [tn=xn] :

Let S be a substitution and y a variable. S[y 7! t0] will then denote the
substitution

fx1 7! t1; : : : ; xi�1 7! ti�1; xi+1 7! ti+1; xn 7! tn; y 7! t0g

if y � xi for some i, and the substitution fx1 7! t1; : : : ; xn 7! tn; y 7! t0g
otherwise.

CHAPTER 2. THE SIZE LANGUAGE 25

The de�nition of substitution given above is not the most general possible,
but it will be suÆcient for our needs.

Later in the chapter, we will have to \substitute" contexts for free vari-
ables in other contexts. Substitution, as de�ned in De�nition 2.1.16, is an
operation de�ned only on terms, not on contexts. Moreover, we cannot sim-
ply extend it to contexts, since its de�nition relies on working with terms up
to �-equivalence, and we do not identify �-equivalent contexts. We therefore
introduce the following operation of variable replacement

De�nition 2.1.20 Let C be a context, C 0 a closed context and x a vari-
able. The context C with the free occurrences of x replaced by C 0, notation
CfC 0=xg, is de�ned inductively as follows.

xfC 0=xg � C 0

yfC 0=xg � y when y 6� x
2fC 0=xg � 2

(�x:C1)fC
0=xg � �x:C1

(�y:C1)fC
0=xg � �y:(C1fC

0=xg) when y 6� x
(C1 C2)fC

0=xg � C1fC
0=xg C2fC

0=xg

The de�nition may look complicated, but its intuitive meaning is simple
{ to get the context CfC 0=xg, one has to replace every free occurrence of x
in C by C 0. As C 0 is closed, the question of variable capture does not arise.

2.1.3 Terms and equality

De�nition 2.1.21 The � equational theory of the simply typed lambda
calculus is the congruence =� on the set of terms generated by the schema

(�x:t) t0 =� t[t
0=x] :

As we mentioned before, the rule schema above is called the � equality.

We will sometimes be interested in the decidability of various equational
theories, and for this it is often useful to regard the equations as having a
computational aspect, e.g. to view the � equality as a rewrite rule

(�x:t) t0 !� t[t
0=x]

CHAPTER 2. THE SIZE LANGUAGE 26

describing the computation of the result of a function application. Before we
go any further, let us de�ne some standard notions from the theory of term
rewriting systems (for a more detailed account of various aspects of rewriting
see, for example, [Klop, 1992] or [Dershowitz and Jouannaud, 1990]).

De�nition 2.1.22 A set of base reductions is simply a binary relation R on
the set of terms. When (t1; t2) 2 R then we say that t1 is an R-redex and t2
an R-reduct. The relation!R, called the one-step R-reduction, is de�ned as
follows

(t1; t2) 2 R

t1 !R t2

t1 !R t2
�x:t1 !R �x:t2

t1 !R t2
t0 t1 !R t0 t2

t1 !R t2
t1 t0 !R t2 t0

where t0 is a term of the proper type. The many-step R-reduction !�
R is the

reexive and transitive closure of !R. R-equality =R is the symmetric and
transitive closure of !�

R.

Remarks

1. The one-step R-reduction can alternatively be de�ned by

(t1; t2) 2 R

C[t1]!R C[t2]

where C is a context with one hole of the proper type.

2. Note that =� as de�ned above is indeed the congruence generated by
the base reduction �.

De�nition 2.1.23 A relation!R is conuent (or Church-Rosser) if, for any
pair of reductions t !�

R t0 and t !�
R t00, there is a term s such that t0 !�

R s
and t00 !�

R s. Relation !R is locally conuent (or weakly Church-Rosser)
if whenever t !R t0 and t !R t00, there is a term s such that t0 !�

R s and
t00 !�

R s.

CHAPTER 2. THE SIZE LANGUAGE 27

De�nition 2.1.24 A term t is a normal form under!R, if there is no term
t0 such that t !R t0. If t0 !�

R t for some normal form t, we say that t
is a normal form of t0. Relation !R is weakly normalising if every term
has a normal form. Relation !R is strongly normalising if every reduction
sequence t1 !R t2 !R t3 !R � � � terminates.

If a reduction is both conuent and strongly normalising, then the equal-
ity =R is decidable (provided, of course, that R is computable, but this we
will always assume). From this point of view the following lemma is useful.

Lemma 2.1.25 (Newman's lemma). A reduction which is strongly nor-
malising and locally conuent is conuent.

Proof. A short proof can be found in [Dershowitz and Jouannaud, 1990].

Lemma 2.1.26 (Subject reduction lemma). If � ` t : � and t !�
� t0,

then � ` t0 : � .

Proof. It is suÆcient to show the lemma for one step �-reductions as the
general case then immediately follows. So let t !� t0. This is induced by
some base reduction s !� s0. Lemma 2.1.17 ensures that the type of s is
the same as the type of s0 (under any valid typing context). The lemma that
easily follows by structural induction on t.

Theorem 2.1.27 !� is both strongly normalising and conuent.

Proof. A proof of strong normalisation can be found in [Girard et al., 1989].
The proof of conuency is a direct corollary of the previous lemma and the
conuency of the untyped lambda calculus, the proof of which can be found
in [Barendregt, 1984].

Corollary 2.1.28 =� is decidable.

Proof. Follows immediately from the previous theorem. We �rst normalise
both terms in question (any reduction strategy will do), and then compare
the resulting normal forms (the decidability of the last step follows from the
decidability of �-equivalence).

CHAPTER 2. THE SIZE LANGUAGE 28

When we extend the � reduction system by the rule

�x:t x! t

(called the � rule), we get another widely studied system { the �� equality.
This stronger kind of term equality captures the notion of extensional equality
{ two closed terms t and t0 of type � are extensionally equal if, for any context
C[]� of base type, C[t] and C[t0] have the same normal form. Although the ��
system is still conuent and strongly normalising, the conuency is easily lost
once we extend the base calculus by new constructs and their corresponding
� rules (such as products, see Section 2.2.2). There are ways to restore the
conuency of the calculus, such as to view � rules as expansions rather than
contractions, as in [Jay and Ghani, 1995] or [Ghani, 1995], but this leads to
non-terminating reductions, and therefore syntactic restrictions on the use
of this rule have to be imposed. Since extensionality of the calculus will not
be our main concern, � rules will not be introduced in any of the languages
in this thesis.

2.1.4 Evaluating terms

If we now go back to the motivating example at the beginning of this section,
we can see that we can really think of terms as representing (very simple)
computations and the process of a reduction to a � normal form as an eval-
uation of this computation. However, even though a reduction system tells
us what the result of this computation should be, it does not specify how to
obtain this result. Of course, in a conuent and strongly normalising system
this is not much of a problem, since any strategy will ultimately lead to the
same result. But even in such a system, some strategies may lead to the
result much faster than others. And when working with either non-conuent
or non-strongly normalising systems, the choice of a strategy becomes even
more important.

The two standard evaluation strategies (or operational semantics) are ea-
ger (call-by-value) and lazy (call-by-name). Informally, an eager operational
semantics will evaluate the argument to a function before � reducing the ap-
plication, while a lazy one will reduce the �-redex straight away. The remain-
der of this section will formally present an eager operational semantics for the

CHAPTER 2. THE SIZE LANGUAGE 29

simply typed lambda calculus. This semantics will be later extended to Size
and Vec. A good introduction to operational semantics is [Gunter, 1992].

De�nition 2.1.29 A term t is a value if it is either a variable or of the form
�x�:t0.

De�nition 2.1.30 The eager operational semantics of the simply typed
lambda calculus is the binary relation) between closed terms of the calculus
generated by the rules in Fig 2.2.

�x�:t) �x�:t

t1) �x�:t t2) v t[v=x]) v0

t1 t2) v0

Figure 2.2: Eager operational semantics of the simply typed calculus

De�nition 2.1.31 Given a term t, we say that the evaluation of t termi-
nates, if there exists a value v such that t) v (in which case t evaluates to
v). The evaluation does not terminate otherwise.

Remark The complexity of the derivation tree of t) v will be referred to
as the evaluation complexity of t.

The following lemma summarises the important facts about operational
semantics.

Lemma 2.1.32 Let t and v be closed terms.

1. If t) v, then v is a value.

2. If t) v1 and t) v2, then v1 � v2.

3. If t) v, then t!�
� v.

4. If ` t : � and t) v, then ` v : �.

CHAPTER 2. THE SIZE LANGUAGE 30

5. The evaluation of t terminates.

Proof.

1. By induction on the height of the derivation of t) v.

2. By induction on the height of the derivation of t) v and then by case
analysis on the last rule used.

3. By induction on the height of the derivation of t) v.

4. Follows immediately from the previous clause and Lemma 2.1.26.

5. By induction on the structure of t.

One might think that the third clause in the previous lemma can be
strengthened to say that whenever t) v, then v is the �-normal form of
t. This is not necessarily true, however, since a value can contain �-redexes
hidden under �'s.

De�nition 2.1.33 Let t and t0 be closed terms of type �. We say that t
and t0 have equivalent values (notation t �= t0), if either both evaluate to the
same value or the evaluation of both does not terminate.

De�nition 2.1.34 Let t and t0 be closed terms of type �. We say that t
operationally approximates t0 (notation t � t0) if, for any closed context C[]�

of base type,
C[t]) v implies C[t0]) v :

Lemma 2.1.35 � is reexive and transitive.

Proof. Both properties follow immediately from the de�nition.

CHAPTER 2. THE SIZE LANGUAGE 31

Lemma 2.1.35 justi�es the following de�nition.

De�nition 2.1.36 Let t and t0 be closed terms of type �. If t � t0 and
t0 � t, then we say that t and t0 are operationally equivalent (notation t � t0).

It is easy to see that t � t0 i� C[t] �= C[t0] for every C of the proper form.

2.2 Extending the calculus

The base lambda calculus, as presented in the previous section, is not, of
course, very expressive. There are, essentially, two ways of increasing its
expressive power { either by enriching its type system by new constructs or
by extending its term formation rules (or, often, both). In this section we
describe several such extensions, those that are relevant to the de�nitions
of Size and Vec. Most of them are quite standard and have been used in
various functional languages, such as PCF (see e.g. [Gunter, 1992]).

2.2.1 Combinators

The type system of the simply typed lambda calculus is built over some set
Base of base types. However, it is easy to see that there are no closed terms
of these base types. One has to introduce some combinators (or additional
term constructors) to be able to construct such terms. Usually it is a matter
of taste and personal preference whether to use combinators or constructors,
and often the expressive powers of both approaches are, in e�ect, equivalent.
The real di�erence lies in the operational semantics, since combinators are
forced to use the \standard" evaluation strategy, while constructors (such as
the conditional below) can use specially tailored evaluation mechanisms. We
will, in most cases, prefer the use of combinators over constructors. So in the
following we shall suppose that we have a set of combinators Comb together
with a function ctype which assigns to each combinator its type. The set of
raw terms is then de�ned by

t ::= x j c j �x�:t j t t

CHAPTER 2. THE SIZE LANGUAGE 32

where c 2 Comb. The typing judgments are extended by the inference rule

Combinator
ctype(c) � �

� ` c : �

(instead of ctype(c) � �, we will usually write c : �). We will probably
want to extend !� by some other rules describing the computation of terms
involving combinators (such rules are usually called Æ rules). Of course, if
we do that, it is not clear whether the resulting calculus will still be strongly
normalising and/or conuent.

2.2.2 Product type

One of the most common extensions of the type system is the introduc-
tion of product types (so much so, that often, as in [Girard et al., 1989] or
[Lambek and Scott, 1986], the calculus without products is not studied at
all).

We extend the type system by the product type constructor � with ���0

representing the binary product of � and �0. � binds tighter than ! and
associates to the right. We introduce three combinators

pair�;�
0

: � ! �0 ! � � �0

fst�;�
0

: � � �0 ! �

snd�;�
0

: � � �0 ! �0

representing the pairing, and the �rst and second projection, respectively.
Where the types are clear from the context or unimportant, we will omit
them. We introduce the notation ht; t0i as syntactic sugar for pair t t0.

We can think of pair as a constructor, and fst and snd as destructors.
That the combinators should come in such pairs is not surprising { they are
the equivalents of pairs of introduction and elimination rules in logic.

The usual reduction rules associated with products are

fst ht; t0i ! t
snd ht; t0i ! t0

Another commonly used rule is the � rule which for products has usually
the form

hfst t; snd ti ! t ;

CHAPTER 2. THE SIZE LANGUAGE 33

but, as we said before, we do not introduce this rule.

2.2.3 Unit

The unit type un is the trivial type with only one closed normal term un,
also called the unit. The rule most frequently associated with the unit is the
� contraction

t ! un

but, again, we do not introduce this rule.

2.2.4 Natural numbers

The type nat of natural numbers is a very common base type. There are
several possible ways to build terms of this type, and we will opt for a very
simple one. We introduce three combinators

zero : nat

succ : nat! nat

pred : nat! nat

representing zero, and the successor and predecessor functions, respectively.
The associated reduction rule is

pred (succ t) ! t :

In some situations, one could also add the rule

pred zero ! zero :

However, we prefer to regard pred zero as an error, and leave it, for now, to
be an irreducible term.

One can also add combinators representing other arithmetic operations,
such as addition or multiplication, and the appropriate reduction rules, but,
for the moment, we restrict ourselves to the combinators given above.

We introduce the following notation to improve readability

~n � succ (� � � (succ| {z }
n-times

zero)) :

We will use lowercase roman letters, typically n and m, to denote terms of
type nat.

CHAPTER 2. THE SIZE LANGUAGE 34

2.2.5 Booleans and conditionals

The base type bool is a type with two closed normal terms, true and false.
Had we introduced the coproduct type constructor +, booleans could have
been represented by the type un + un with true and false having been given
by the �rst and second injection, respectively.

We extend the term-forming rules by a new constructor, the conditional

if t then t else t :

In a term if t then t1 else t2, t is the condition, t1 is the then branch, and t2
is the else branch. The typing of conditionals is given by

Conditional
� ` t : bool � ` t1 : � � ` t2 : �

� ` if t then t1 else t2 : �

and its base reductions are

if true then t1 else t2 ! t1
if false then t1 else t2 ! t2 :

The main reason for introducing conditional as a term constructor, rather
than a combinator, is because its evaluation should be lazy, i.e. only the
branch determined by the value of the condition should be evaluated. This
becomes especially important in the presence of recursion (see below).

Of course, the conditional constructor described above is only one, though
the most common, of many possible ways how to introduce branching into
a programming language. In the Size language we will introduce a slightly
modi�ed conditional (denoted ifs) which branches according to a natural
number, with ~0 indicating one branch and successors the other. The reduc-
tion rules are then

ifs ~0 then t1 else t2 ! t1
ifs succ t then t1 else t2 ! t2 :

We will also need \boolean" operations on sizes, such as conjunction and
negation given by

and : nat! nat! nat

and � �x:�y:ifs x then y else x
not : nat! nat

not � �x:ifs x then succ x else x :

CHAPTER 2. THE SIZE LANGUAGE 35

2.2.6 Equality

Equality is probably the most common predicate. If we want to introduce
equality over type � as a combinator eq�, one of its possible types, and the
one we prefer, is

eq� : � ! � ! bool :

The associated reduction rules then depend on the type �. In the simplest
case, when � � un, the reduction rule is

equn un un ! true

More interesting and useful is equality on natural numbers, where the reduc-
tions can be

eqnat zero zero ! true

eqnat (succ t1) (succ t2) ! eqnat t1 t2
eqnat (succ t1) zero ! false

eqnat zero (succ t2) ! false

We might easily extend equality to products of natural numbers, where two
pairs are equal if both components are (note that this requires introducing
the conjunction operation and : bool! bool! bool on booleans):

eqnat�nat ht1; t2i ht
0
1; t

0
2i ! and (eqnat t1 t

0
1) (eq

nat t2 t
0
2)

Equality over function types is usually of a limited use only, since the
kind of equality one would typically like to capture (the extensional one) is
then often undecidable. We will not introduce equality over function types
in any of our languages.

2.2.7 Recursion

The untyped lambda calculus is a very powerful system, and it can be shown
that any recursive function can be represented in it. But the type restrictions
we imposed in the simply typed lambda calculus have severely reduced its
expressive power. To recover this expressivity, we have to be able to represent
unbounded recursion in some way. We opt for introducing the rec constructor:

rec f�:t

CHAPTER 2. THE SIZE LANGUAGE 36

where f is variable. The typing of rec is given below.

Recursion
�; f : � ` t : �

� ` rec f�:t : �

(type superscripts will often be omitted). As we can see, the variable f
is bound in rec f:t. This means that one has to be careful when de�ning
substitution into such a term. The relevant clauses extending the de�nition
of substitution (De�nition 2.1.16) look as follows

(rec x:t)[t0=x] � rec x:t
(rec f:t)[t0=x] � rec f:t[t0=x] where x 6� f and f 62 FV (t0)
(rec f:t)[t0=x] � rec z:(t[z=y])[t0=x]

where x 6� y, f 2 FV (t0) and z 62 FV (t) [FV (t0)

The reduction rule associated with recursion is

rec f:t ! t[rec f:t=f]

Of course, this rule destroys any hope for strong normalisation of the system,
since, when f is free in t, we can keep applying this rule forever. Neverthe-
less, the evaluation of rec f:t may terminate even in these cases, due to
the lazy evaluation of conditionals. The rec constructor is powerful enough
to represent, when taken together with the other constructs de�ned above
(conditionals, natural numbers), any recursive function.

One could also introduce the less powerful iterator constructor iter

iter : (� ! �)! � ! nat! �

with the reduction rules

iter f t (succ n) ! f(iter f t n)
iter f t zero ! t

Unlike the unbounded recursion, iteration always terminates, and can be
used to represent primitive recursive functions only.

CHAPTER 2. THE SIZE LANGUAGE 37

2.2.8 Errors

There are several ways of treating terms which are usually regarded as errors
(such as taking the predecessor of zero, or division by zero). One can take the
view that terms containing errors do not have to evaluate to the \correct"
value, and introduce some ad hoc reduction rules for such terms (such as
pred zero ! zero). Another possibility is to leave such terms unreduced,
and let the evaluation mechanism to deal with them (e.g. through the use of
exceptions). A common method (mainly in untyped calculi), is to regard as
errors those terms whose evaluation does not terminate. This, of course, is
not possible if one wants to have a strongly normalising system. Since the
detection of errors is our primary objective, we will make errors explicit in
the language (actually only certain kinds of errors { shape errors). We will
introduce, for each type �, the error term, denoted err� (the type may be
omitted where appropriate). We then put, for example,

pred zero ! errnat :

A question then arises whether terms involving errors should, at least in
some cases, themselves be considered to be errors. This could be reected in
the reduction system by introducing error propagating rules such as

f err ! err

(and analogous ones for other term constructs). Though regarding f err as
error may look reasonable, introduction of the rule above (and its equivalents)
leads to a loss of conuency in the calculus. This can be easily seen by
considering, for example, the term (�x:y) err which can be reduced either to
y (by the �-reduction), or to err. We will follow the ideas from [Plotkin, 1975]
and [Moggi, 1989] and restrict � reduction to values, i.e. terms that cannot
evaluate to error. We will not introduce rules propagating errors as yet,
however, and let the operational semantics handle them. A di�erent approach
to error handling will be investigated in Chapter 5.

2.3 The Size language

We can now de�ne the Size language. As we have already said, it is a simply
typed functional language with �nite products, the type of natural numbers,

CHAPTER 2. THE SIZE LANGUAGE 38

and general recursion. The decisions taken in its design were motivated by its
intended use as a target language of shape analysis of array-based languages.

Size type system is given by

� ::= un j sz j � � � j � ! � :

The base types are un and sz, the ground types � are built up from the base
ones using the product construction only.

The type sz, called size, has exactly the same term structure as the type
of natural numbers as presented in the previous section. The di�erent name
should emphasize the fact that sz will be used as the type of sizes of arrays,
as opposed to, for example, the type of data entries.

The raw terms are given by the following grammar

t ::= x j c j �x�:t j t t j rec f�:t j ifs t then t else t :

where c is a combinator (the set of which is given in Fig 2.3, together with
their types). All the combinators were already discussed in the previous
section, though, in some cases, the types have been slightly modi�ed. Note,
in particular, that we do not introduce equality of functions. Also, as we have
already indicated in Section 2.2.5, we will use sizes as conditions in shape
conditionals, and the following terms as logical operations on sizes:

and : sz! sz ! sz

and � �x:�y:ifs x then y else x
not : sz! sz

not � �x:ifs x then succ x else x :

The type inference rules are given in Fig 2.4.

Size values are de�ned below.

De�nition 2.3.1 A value v is a term given by the following grammar

v ::= x j c (6� err) j �x�:t j pair v j pair v v j succ v j eq v :

A result is a term which is either a value or err.

Remarks

CHAPTER 2. THE SIZE LANGUAGE 39

un : un

pair�;�
0

: � ! �0 ! � � �0

fst�;�
0

: � � �0 ! �

snd�;�
0

: � � �0 ! �0

zero : sz

succ : sz! sz

pred : sz! sz

eq� : � ! � ! sz

err� : �

Figure 2.3: Size combinators and their types

Variable x : � ` x : �

Weakening
� ` t : � x 62 Dom(�)

�; x : �0 ` t : �

Combinator
c : �

� ` c : �

Abs
�; x : � ` t : �0

� ` �x�:t : � ! �0

App
� ` t : �0 ! � � ` t0 : �0

� ` t t0 : �

Rec
�; f : � ` t : �

� ` rec f�:t : �

Ifs
� ` t : sz � ` t1 : � � ` t2 : �

� ` ifs t then t1 else t2 : �

Figure 2.4: Typing judgments for Size

CHAPTER 2. THE SIZE LANGUAGE 40

1. We will use the letters v and r to denote values and results, respectively.

2. Values are built from constructors (such as pair) and partially applied
destructors (eq).

3. The evaluation of a term in the operational semantics of Size will either
not terminate or return a result (see below).

Lemma 2.3.2 If � ` t : �0 and � ` t : �1 then �0 � �1.

Proof. By induction on the height of derivation of � ` t : �0.

The base reductions are given in Fig 2.5. Notice the modi�ed � (and some
other) rules that ensure eager reduction (along the lines of [Plotkin, 1975]).
As we have discussed in Section 2.2.8, additional rules propagating err could
be added. This would simplify normal forms of the system, but as we will
not concentrate on normal forms here, we do not introduce them. We will
come back to this problem in Chapter 5.

(�x:t) v !sz t[v=x]

rec f:t !sz t[rec f:t=f]

fst ht1; vi !sz t1
snd hv; t2i !sz t2
pred zero !sz err

pred (succ t) !sz t

eq zero t !sz t

eq (succ t) zero !sz succ t

eq (succ t1) (succ t2) !sz eq t1 t2
eq un un !sz zero

eq ht1; t2i hs1; s2i !sz and (eq t1 s1) (eq t2 s2)

ifs zero then t1 else t2 !sz t1
ifs succ v then t1 else t2 !sz t2

Figure 2.5: Base reductions for Size

CHAPTER 2. THE SIZE LANGUAGE 41

The usual suite of basic lemmas, such as that presented earlier in the
chapter for the core calculus, can then be proved. We will concentrate here
only on those claims whose proofs require signi�cant changes.

Theorem 2.3.3 !sz is conuent.

Proof. The detailed proof of this theorem is given in Appendix A, and
we shall therefore present here only its brief overview. The proof relies on
the conuency of any left-linear and non-ambiguous combinatory reduction
system, as showed in [Klop, 1980]. Here left-linear has its usual meaning, that
is in every reduction rule a variable occurs at most once in the redex (i.e.
on the left), and non-ambiguous is the equivalent of having no critical pairs.
Such reduction systems are regular and we can construct, in a routine way,
a regular combinatory reduction system
 such that Size can be embedded
into
 in such a way that the reduction !sz is preserved. The conuency of
!sz then immediately follows.

Of course, !sz is not strongly normalising, because of the presence of
general recursion.

We now present an operational semantics of Size.

Lemma 2.3.4 Let v be a value.

� If v : sz, then there exists n such that v � ~n.

� If v : �1 � �2, then v � hv1; v2i for some values v1 : �1 and v2 : �2.

Proof. Follows immediately from the de�nition.

The operational semantics)sz of Size is the binary relation between
closed terms generated by the rules in Fig 2.6. The semantics is an extension
of the eager semantics for the simply typed lambda calculus. The rules are
structured so as to avoid ambiguity in evaluation as much as possible.

Lemma 2.3.5 If t)sz r, then r is a result.

Proof. By induction on the height of the derivation of t)sz r.

CHAPTER 2. THE SIZE LANGUAGE 42

r is a result

r)sz r

t1)sz �x:t t2)sz v t[v=x])sz r

t1 t2)sz r

t1)sz err

t1 t2)sz err

t1)sz v t2)sz err

t1 t2)sz err

t1)sz pair t2)sz v

t1 t2)sz pair v

t1)sz pair v1 t2)sz v2
t1 t2)sz hv1; v2i

t1)sz fst t2)sz hv1; v2i

t1 t2)sz v1

t1)sz snd t2)sz hv1; v2i

t1 t2)sz v2

t1)sz succ t2)sz v

t1 t2)sz succ v

t1)sz pred t2)sz succ v

t1 t2)sz v

t1)sz pred t2)sz zero

t1 t2)sz err

t1)sz eq t2)sz v

t1 t2)sz eq v

t1)sz eq zero t2)sz v

t1 t2)sz v

t1)sz eq (succ v) t2)sz zero

t1 t2)sz succ v

t1)sz eq (succ v) t2)sz succ v
0

eq v v0)sz v
00

t1 t2)sz v00
t1)sz eq un t2)sz un

t1 t2)sz zero

t1)sz eq hv1; v2i t2)sz hv
0
1; v

0
2i

and (eq v1 v
0
1) (eq v2 v

0
2))sz v

t1 t2)sz v

t[rec f:t=f])sz r

rec f:t)sz r

t)sz zero t1)sz r

ifs t then t1 else t2)sz r

t)sz succ v t2)sz r

ifs t then t1 else t2)sz r

t)sz err

ifs t then t1 else t2)sz err

Figure 2.6: Operational semantics of Size

CHAPTER 2. THE SIZE LANGUAGE 43

Unlike in the simply typed lambda calculus, there are terms in Size, such
as rec f�:f , whose evaluation does not terminate.

Lemma 2.3.6 If t)sz r1 and t)sz r2, then r1 � r2.

Proof. By induction on the height of the derivation of t)sz r1 and then
by case analysis on the last rule used. A little care has to be taken when
evaluating terms such as succ zero, as then there are two possible derivations:
either succ zero evaluates to itself in one step, since it is a value, or we can
treat it as an application and �rst evaluate both succ and zero to themselves.
Of course, the result is the same in both cases.

If a term evaluates to a value, then its evaluation respects the!sz reduc-
tion, as the following lemma shows.

Lemma 2.3.7 If t)sz v (where v 6� err), then t!�
sz
v.

Proof. By induction on the height of the derivation of t)sz v.

Lemma 2.3.8 If ` t : � and t)sz r, then ` r : �.

Proof. Follows immediately from the Subject reduction lemma and the pre-
vious lemma.

In the remainder of this chapter, we will aim to prove the Soundness
theorem for Size (Theorem 2.3.14), which says that reduction preserves op-
erational equality:

t =sz t
0 implies t �sz t

0

The proof of this theorem will require several technical results, which we will
prove �rst. These technical parts may be skipped without losing understand-
ing of the rest of the thesis.

It might be useful at this point to review some of the notation introduced
earlier:

t � t0 means t and t0 are syntactically equal, see De�nition 2.1.2
t) r t evaluates to r; see De�nition 2.1.31
t �= t0 t and t0 have equivalent results, see De�nition 2.1.33
t � t0 t and t0 are operationally equivalent, see De�nition 2.1.36
t = t0 t and t0 are equal (under the equational theory),

see De�nition 2.1.21

CHAPTER 2. THE SIZE LANGUAGE 44

(We will omit the subscripts as in)sz in the remainder of this chapter as all
of the above notions will refer to Size.)

Remember that operational equivalence of two terms t and t0 essentially
means \C[t] and C[t0] have the same value for any context C of base type"
(contexts were de�ned in De�nition 2.1.9).

Lemma 2.3.9 Let t : � be a closed term, C[]� a closed context.

1. If t) r and C[t] is a result, then so is C[r].

2. If C[t] is a result, then either t is a result or each occurrence of 2 in C
is in the scope of a �. Consequently, if C[t] is a result of ground type,
then either t is a result, or there are no occurrences of 2 in C.

3. If C[t] and C[t0] are results and at least one of t and t0 is not a result
then every occurrence of 2 in C is in the scope of a �.

Proof. The second clause can be proved by induction on the structure of
C. The �rst and third clause immediately follow from the second.

Lemma 2.3.10 Let t and t0 be closed terms of type � with the same result
r, and C[]� a context such that the evaluation of C[t] terminates. Then there
exists a context bC[]� such that C[t]) bC[t] and C[t0]) bC[t0]. In particular,
the evaluation of C[t0] terminates.

Proof.

Let C[t]) r0. If t � r � t0 for some result r, then we can put bC � r0

and the lemma immediately holds. So in the following we will assume that
either t 6� r or t0 6� r.

The proof proceeds by induction on the evaluation complexity of C[t],
and then by case analysis on the structure of C. Note that we will use in
this proof (as well as in some other later on) typing restrictions to eliminate
those cases that are ill typed.

1. If C � 2, then let bC � r.

CHAPTER 2. THE SIZE LANGUAGE 45

2. If C is a combinator c, then let bC � c.

3. If C � �x:C1, then let bC � C.

4. Suppose C � C1 C2.

We can apply the induction hypothesis to C1[t] to get a context bC1

such that C1[t]) bC1[t] and C1[t
0]) bC1[t

0].

Suppose bC1[t] � err. Then bC1 cannot be 2 by Lemma 2.3.9 (3) and
thus bC1 � err. Now let bC � err and the lemma holds.

So assume that bC1[t] is not err. Then the evaluation complexity of C2[t]
is less than that of C[t] and we can use the induction hypothesis on
C2[t] to get a context bC2 such that C2[t]) bC2[t] and C2[t

0]) bC2[t
0]. IfbC2[t] � err then, as above, bC2 � err. Now let bC � err and the lemma

holds. So in the following assume that bC2[t] is not err.

If both bC1[t] bC2[t] and bC1[t
0] bC2[t

0] are values, we put bC � bC1
bC2 and

the proof is �nished. So suppose bC1[t] bC2[t] is not a value (the case
when bC1[t

0] bC2[t
0] is not a value is analogous). Then bC1[t] has to be of

one of the following forms.

(a) If bC1[t] � �x:t1 then, by Lemma 2.3.9 (3), bC1 � �x:C 0 for some
C 0. Consider the context C 00 � C 0f bC2=xg (see De�nition 2.1.20).
Clearly C 00[t] �= C[t] and C 00[t0] �= C[t0]. Also, the evaluation com-
plexity of C 00[t] is less than that of C[t] and we can therefore apply
the induction hypothesis to get context bC 00 such that C 00[t]) bC 00[t]
and C 00[t0]) bC 00[t0]. Let then bC � bC 00 and the lemma holds.

(b) If bC1[t] � fst then bC2[t] � hu1; u2i for some values u1 and u2.
Lemma 2.3.9 (3) then implies that bC1 � fst and bC2 � hC 0

2; C
00
2 i.

Since the evaluation complexity of C 0
2[t] is less than that of C[t], we

use the induction hypothesis to get bC 0
2 such that C

0
2[t])

bC 0
2[t] and

C 0
2[t

0]) bC 0
2[t

0]. Let then bC � bC 0
2. Analogously for bC1[t] � snd.

(c) In the remaining cases, when bC1[t] 2 fpred; eq u0g, the contextbC2[t] is of ground type and therefore, by Lemma 2.3.9 (3), there
are no occurrences of 2 in bC1

bC2. We then put bC � v0 (wherebC1[t] bC2[t]) v0) and the result follows.

CHAPTER 2. THE SIZE LANGUAGE 46

5. Suppose C � rec f:C1. Consider the context C2 � C1frec f:C1=fg.
The evaluation complexity of C2[t] is less than that of C[t] and we can
therefore apply the induction hypothesis to get context bC2 such that
C2[t]) bC2[t] and C2[t

0]) bC2[t
0]. We then put bC � bC2.

6. If C � ifs C1 then C2 else C3 then we can apply the induction hypothesis
to C1[t] to get bC1. There are three cases to consider.

(a) If bC1[t] � err then, by Lemma 2.3.9 (3), bC1 � err and we putbC � err.

(b) If bC1[t] � zero then, by Lemma 2.3.9 (3), bC1 � zero and we can
apply the induction hypothesis to C2[t] to get bC2. We then putbC � bC2.

(c) The case when bC1[t] � succ v is analogous to the previous one.

We now introduce the notion of a strict context and strict operational
equivalence (sometimes called applicative bisimulation). This will simplify
following proofs.

De�nition 2.3.11 Consider the following grammar:

G ::= 2 j G v j fst G j snd G :

where v is a value. Contexts G[] of base type generated by this grammar
are strict.

Two closed terms t and t0 of type � are strictly operationally equivalent
(notation t � t0) if G[t] �= G[t0] for any strict context G[]�.

We shall use the letter G to represent strict contexts. The following
lemma shows that the notion of strict operational equivalence coincides with
the standard operational equivalence:

Lemma 2.3.12 Let t and t0 be closed terms of type �. Then

t � t0 i� t � t0 :

CHAPTER 2. THE SIZE LANGUAGE 47

Proof. The \if" direction follows immediately. For the converse, suppose
t � t0. We have to show that C[t] �= C[t0] for every context C[]� of base
type. We shall write C[] in the form G[C 0[]] where G[] is strict and a
maximal such. The proof proceeds by induction on the evaluation complexity
of G[C 0[t]], then by induction on the structural complexity of C 0[] and �nally
by case analysis on the structure of C 0[].

1. If C 0 � 2 then C[t] � G[t] �= G[t0] � C[t0].

2. If C 0 is a combinator c then C[t] � C[t0].

3. If C 0 � �x:C1 then G � G0[2 v] for some strict G0[] and value v and
we get

C[t] � G0[(�x:C1[t]) v]
�= G0[C1[t][v=x]]
� G0[C1[v=x][t]]
�= G0[C1[v=x][t

0]] by induction on evaluation complexity
�= G0[(�x:C1[t

0]) v] � C[t0]

4. Suppose C 0 � C1 C2. Then, by twice applying Lemma 2.3.10, we
get contexts bC1[] and bC2[] such that C1[t]) bC1[t], C1[t

0]) bC1[t
0],

C2[t]) bC2[t] and C2[t
0]) bC2[t

0]. Then either bC1 � 2 and thus t � t0

and the proof is �nished, or one of the following cases arises

(a) If bC1 � �x:D then

C[t] �= G[(�x:D[t]) bC2[t]]
�= G[D[t][bC2[t]=x]]

� G[Df bC2=xg[t]] (see De�nition 2.1.20 for Df bC2=xg)
�= G[Df bC2=xg[t

0]] by induction on eval. complexity
�= G0[(�x:D[t0]) bC2[t

0]] �= C[t0]

(b) The remaining cases when bC1 � fpair; pair D; fst; snd; : : :g are
straightforward.

CHAPTER 2. THE SIZE LANGUAGE 48

5. Suppose C 0 � rec f:C1.

C[t] � G[rec f:C1[t]]
�= G[C1[t][rec f:C1[t]=x]]
� G[C1frec f:C1=xg[t]] (see De�nition 2.1.20)
�= G[C1frec f:C1=xg[t

0]] by induction on eval. complexity
�= G0[rec f:C1[t

0]] �= C[t0]

6. Suppose C 0 � ifs C1 then C2 else C3. Then, by applying Lemma 2.3.10,
we get bC1[] such that C1[t]) bC1[t] and C1[t

0]) bC1[t
0]. There are

three cases to consider.

(a) If bC1[t] � err then either bC1 � err and thus C[t] �= err �= C[t0], orbC1 � 2 and t � err � t0 and the proof is �nished.

(b) If bC1[t] � zero then either bC1 � zero or bC1 � 2 and t � zero � t0.
In either case

C[t] �= G[C2[t]] �= G[C2[t
0]] �= C[t]

by induction on the structure of C 0[].

(c) The case bC1[t] � succ v is analogous to the previous one.

The following lemma shows that base reductions on Size respect operational
equivalence.

Lemma 2.3.13 Let t!sz t
0 be a base reduction. Then for any substitution

S of values for the free variables of t, S(t) �= S(t0).

Proof. It is easy to check the lemma for each base reduction, and we will
therefore show only the most complicated case { the � reduction.

Suppose t � (�x:s) v (and thus t0 � s[v=x]). Then, for any substitution
S as speci�ed above, S(v) is a value (and, in particular, v 6� err) and thus

S(t) � S((�x:s) v) � �x:S(s) S(v) �= S(s[S(v)=x]) � S(t0)

and the proof is �nished.

CHAPTER 2. THE SIZE LANGUAGE 49

We can now prove the Soundness theorem for Size:

Theorem 2.3.14 (Soundness theorem). Let s be a closed term. If
s =sz s

0, then s �sz s
0.

Proof. It is enough to show that for any two closed terms s and s0, whenever
s!�

sz s
0 then s � s0. It is suÆcient to consider the one-step reductions only

as the general case then immediately follows. Since any one-step reduction
is induced by a base reduction, this means that s � C[t], s0 � C[t0] for some
context C[] and base reduction t!sz t

0.

So let t !sz t
0 be a base reduction. It is suÆcient to show that for any

context C[] and any substitution S of values such that S(C[t]) is closed,

S(C[t]) � S(C[t0]) :

The proof proceeds by induction on the structural complexity of C[] and
then by case analysis on the structure of C[]. The only two non-trivial cases
follow from the two previous lemmas, as shown below.

1. If C � 2 then S(C[t]) � S[t] �= S[t0] � S(C[t0]) by Lemma 2.3.13.

2. If C � �x�
0

:C 0 then, by Lemma 2.3.12, it is enough to show that

S(C[t]) v � S(C[t]) v

for any value of type �0. We now get

S(C[t]) v �= S(C 0[t])[v=x]
� S 0(C 0[t]) where S 0 = S[x 7! v]
� S 0(C 0[t0]) by induction on the structure of C
� S(C 0[t0])[v=x]
�= S(C[t0])

CHAPTER 2. THE SIZE LANGUAGE 50

The Soundness theorem has several important corollaries that are stated
below:

Corollary 2.3.15

1. If t) r, then t � r.

2. Let t and t0 be closed terms of type � which evaluate to the same result.
Then t � t0.

Proof. The �rst clause follows easily from Theorem 2.3.14 and the second is
an immediate corollary of the �rst.

Chapter 3

The Vec language

We now extend the Size language de�ned in the previous chapter by the
vector type constructor, vec, and call the resulting language Vec. Since the
vector construction can be nested, one can represent arrays of arbitrary (�-
nite) dimensions in Vec. The recursion mechanism of Size, incorporated to
Vec, is powerful enough to express most common array-based operations,
particularly those of linear algebra. Its expressivity combined with its sim-
plicity makes Vec an ideal language for study of shape analysis, and it will
be used to this purpose in the following chapter. Note that eÆciency was not
the primary consideration in the design of Vec, rather it is just a vehicle for
demonstrating the validity of our methods. As we discuss in Chapter 7, the
ideas of Vec have already been incorporated into a "proper" programming
language, FISh ([Jay and Steckler, 1998]).

The chapter is structured as follows. In the �rst section we discuss ways
of adding vectors and arrays to a functional language. The second section
then de�nes Vec itself, and in the last section we use it to represent various
array-based operations.

3.1 Vectors and Arrays

Introducing vectors (or, more often, lists) to a functional language is normally
straightforward. Typically, one adds a new type constructor, vec, and a suite

51

CHAPTER 3. THE VEC LANGUAGE 52

of suitable combinators, such as

nil� : vec �
cons� : � ! vec � ! vec �
hd� : vec � ! �
tl� : vec � ! vec �
length� : vec � ! nat

(where vec binds tighter then !). Here nil� represents the empty vector (of
terms of type �), cons� t1 t prepends a term t1 to a vector t, hd

� returns the
�rst entry in a vector (its head), and tl� the remaining part of the vector (its
tail). As usual, type superscripts will be usually omitted.

The usual reduction rules associated with the above combinators are

hd (cons t1 t) ! t1
tl (cons t1 t) ! t :
length (nil) ! zero

length (cons t1 t) ! succ (length t) :

Neither the head nor the tail of an empty vector is usually de�ned.

In the next section a similar approach will be used to add vectors to
Vec, a functional language based on Size. To make shape analysis of Vec
possible, we have to make two changes. Firstly, we modify the type of length
to

length� : vec � ! sz

since the length of an array is a shape (a size) rather than a datum (a
natural number). Secondly, for technical reasons which will become clear in
the following chapter, we do not allow empty vectors in Vec { the simplest
vector which can be constructed will be the singleton. Therefore, instead of
the nil constructor, we introduce the singleton combinator

sing� : � ! (vec �)

with the reduction rules

hd (sing t) ! t
tl (sing t) ! err

length (sing t) ! ~1 :

CHAPTER 3. THE VEC LANGUAGE 53

We introduce the following notation to improve readability:

t1 :: t � cons t1 t

[t1; t2; : : : ; tn] � t1 :: t2 :: � � � :: (sing tn)

where :: is right-associative.

To clarify the terminology: a matrix with 3 rows and 4 columns is for us
a two-dimensional array whose sizes are 3 and 4. Finite dimensional arrays
are often represented by nested vectors and that is the approach we adopt as
well. The challenge then is to ensure that the nested vectors do correspond
to arrays, in other words that all entries in a vector have the same length.
As we will see in the next chapter, we will use shape analysis to identify
ill-formed arrays.

3.2 The Vec language

Vec is a simply typed language with a vector type constructor vec having
the Size language in its core.

The type system of Vec is given by the following grammar

Æ ::= nat j bool j : : :
� ::= Æ j un j sz j � � � j vec �
� ::= � j � � � j � ! � :

Remarks

1. The types Æ are the datum types representing the basic data of the
system, such as natural numbers, booleans and so on.

2. The types � are the data types which include the datum types, the
type sz of sizes, and are closed under �nite products and vector con-
structions.

3. � ranges over phrase types which include the data types and functions
between them. The reason for distinguishing phrase types from data
types is to disallow construction of types such as vectors of functions
{ as we will see in the next chapter, we need decidable equality on the

CHAPTER 3. THE VEC LANGUAGE 54

(shapes of) entries of vectors, and this would be problematic in the
presence of functions.

A ground type is one which does not contain any arrow types. The ground
data-free types, indicated by the meta-variable �, are just products of copies
of sz and un:

� ::= un j sz j � � � :

As in Size, these are the types for which the equality combinator eq is
introduced.

Finally, & ranges over the discrete types generated by

& ::= Æ j un j & � & j & ! & :

Discrete types carry only trivial shape information.

un : un

pair�;�
0

: � ! �0 ! � � �0

fst�;�
0

: � � �0 ! �

snd�;�
0

: � � �0 ! �0

zero : sz

succ : sz! sz

pred : sz! sz

eq� : �! � ! sz

err� : �

sing� : � ! vec �

cons� : � ! vec � ! vec �

hd� : vec � ! �

tl� : vec � ! vec �

length� : vec � ! sz

Figure 3.1: Typing of Vec combinators

The terms of the system are

t ::= x j c j �x�:t j t t j rec f�: t j ifs t then t else t

CHAPTER 3. THE VEC LANGUAGE 55

where c is a combinator, the list of which is given in Fig 3.1. The combinators
are either those of Size, and as such were discussed in the previous chapter,
or the vector combinators from the previous section. Note that we have not
included operations on datum types though in practice one would introduce
them (and we will do so in Section 3.3). As in Size, we use sizes as conditions
in shape conditionals, and the following terms as logical operations on sizes:

and : sz! sz ! sz

and � �x:�y:ifs x then y else x
not : sz! sz

not � �x:ifs x then succ x else x :

Analogously as for Size we de�ne the notions of value and result:

De�nition 3.2.1 A value v is a term given by the following grammar

v ::= x j c (6� err) j �x�:t j pair v j pair v v j succ v j eq v
j sing v j cons v j cons v v :

A result r is either a value or err.

As before, we will use v and r to denote values and results, respectively.

The type inference rules are given in Fig 3.2, and the reduction rules in
Fig 3.3 (as in the case of Size, the reduction is lazy).

We will not prove the equivalents of most of the standard lemmas proved
in Section 2.1 for the core lambda calculus as their proofs in Vec are analo-
gous.

Theorem 3.2.2 !vc is conuent.

Proof. Given in Appendix A. The proof is analogous to that of the conu-
ency of Size (Theorem 2.3.3).

It can be easily seen that all Size terms are also terms of Vec. Moreover,
as the following lemma shows, the reductions of Size terms are the same in
both languages.

Lemma 3.2.3 Let t be a Size term. If t !�
vc t0, then t0 is a Size term.

Moreover
t!�

sz
t0 i� t!�

vc
t0 :

Proof. By induction on the number of reduction steps in t!�
sz t

0.

CHAPTER 3. THE VEC LANGUAGE 56

Variable x : � ` x : �

Weakening
� ` t : � x 62 Dom(�)

�; x : �0 ` t : �

Combinator
c : �

� ` c : �

Abs
�; x : � ` t : �0

� ` �x�:t : � ! �0

App
� ` t : �0 ! � � ` t0 : �0

� ` t t0 : �

Rec
�; f : � ` t : �

� ` rec f�:t : �

Ifs
� ` t : sz � ` t1 : � � ` t2 : �

� ` ifs t then t1 else t2 : �

Figure 3.2: Typing judgments for Vec

So Size really is a \sublanguage" of Vec, and reductions in both lan-
guages are the same (similarly for evaluation, see Lemma 3.2.7 below). There-
fore, when there will be no danger of confusion, we may drop the subscripts
in !sz and !vc.

Lemma 3.2.4 Let v be a value.

� If v : sz, then there exists n such that v � ~n.

� If v : �1 � �2, then v � hv1; v2i for some values v1 : �1 and v2 : �2.

� If v : vec � , then there exist values v1; : : : ; vn of type � such that
v � [v1; : : : ; vn].

Proof. Follows immediately from the de�nition.

CHAPTER 3. THE VEC LANGUAGE 57

(�x:t) v !vc t[v=x]

fst ht1; vi !vc t1
snd hv; t2i !vc t2
pred zero !vc err

pred (succ t) !vc t

eq zero t !vc t

eq (succ t) zero !vc succ t

eq (succ t) (succ t0) !vc eq t t0

eq un un !vc zero

eq ht1; t2i hs1; s2i !vc and (eq t1 t2) (eq s1 s2)

hd [t] !vc t

hd (t1 :: v) !vc t1
tl [t] !vc err

tl (v :: t) !vc t

length [t] !vc succ zero

length (v :: t) !vc succ (length t)

rec f:t !vc t[rec f:t=f]

ifs zero then t1 else t2 !vc t1
ifs succ v then t1 else t2 !vc t2

Figure 3.3: Base reductions for Vec

r is a result

r)vc r

t1)vc �x:t t2)vc v t[v=x])vc r

t1 t2)vc r

t1)vc err

t1 t2)vc err

t1)vc v t2)vc err

t1 t2)vc err

t)vc zero t1)vc r

ifs t then t1 else t2)vc r

t)vc succ v t2)vc r

ifs t then t1 else t2)vc r

t)vc err

ifs t then t1 else t2)vc err

t[rec f:t=f])vc r

rec f:t)vc r

Figure 3.4: Operational semantics of Vec{ Part 1

CHAPTER 3. THE VEC LANGUAGE 58

t1)vc pair t2)vc v

t1 t2)vc pair v

t1)vc pair v1 t2)vc v2
t1 t2)vc hv1; v2i

t1)vc fst t2)vc hv1; v2i

t1 t2)vc v1

t1)vc snd t2)vc hv1; v2i

t1 t2)vc v2

t1)vc succ t2)vc v

t1 t2)vc succ v

t1)vc pred t2)vc succ v

t1 t2)vc v

t1)sz pred t2)sz zero

t1 t2)sz err

t1)sz eq t2)sz v

t1 t2)sz eq v

t1)vc eq zero t2)vc v

t1 t2)vc v

t1)vc eq (succ v) t2)vc zero

t1 t2)vc (succ v

t1)vc eq (succ v) t2)vc succ v
0

eq v v0)vc v
00

t1 t2)vc v00
t1)vc eq un t2)vc un

t1 t2)vc zero

t1)vc eq hv1; v2i t2)vc hv
0
1; v

0
2i

and (eq v1 v
0
1) (eq v2 v

0
2))vc v

00

t1 t2)vc v00
t1)vc sing t2)vc v

t1 t2)vc sing v

t1)vc cons t2)vc v

t1 t2)vc cons v

t1)vc cons v1 t2)vc v

t1 t2)vc cons v1 v

t1)vc hd t2)vc [v]

t1 t2)vc v

t1)vc hd t2)vc v1 :: v

t1 t2)vc v1

t1)vc tl t2)vc [v]

t1 t2)vc err

t1)vc tl t2)vc v1 :: v

t1 t2)vc v

t1)vc length t2)vc [v]

t1 t2)vc succ zero

t1)vc length t2)vc v1 :: v

length v)vc v
0

t1 t2)vc succ v0

Figure 3.5: Operational semantics of Vec{ Part 2

CHAPTER 3. THE VEC LANGUAGE 59

The operational semantics of Vec, given in Fig 3.4 and Fig 3.5, is an
extension of that of Size.

Lemma 3.2.5 Let t be a closed term.

1. If t)vc r, then r is a result.

2. If t)vc r1 and t)vc r2, then r1 � r2.

3. If t)vc v (where v 6� err), then t!�
vc
v.

4. If ` t : � and t)vc r, then ` r : �.

Proof. Analogous to the proofs of the same properties of the operational
semantics of Size.

Theorem 3.2.6 (Soundness theorem). Let s be a closed term. If s =vc s
0

then s �vc s
0.

Proof. Analogous to the proof of the soundness theorem for Size.

Size terms evaluate in the same way in Size and Vec, as the following
lemma shows.

Lemma 3.2.7 Let t be a closed Size term. Whenever t)vc r, then r is a
Size term and moreover t)sz r i� t)vc r.

Proof. We can immediately see that all the evaluation rules of)sz are
among those of)vc.

Since evaluation inVec is the same as in Size, we may drop the subscripts
in)sz and)vc.

CHAPTER 3. THE VEC LANGUAGE 60

3.3 Expressive power

We will now show that the Vec language, as de�ned in the previous section,
is powerful enough to represent many commonly used array operations, in
particular many of the usual array indexing operations, second-order array
operations and those of linear algebra.

The following syntactic sugar will be useful:

is sing x � pred (length x) :

It is easy to see that is sing t evaluates to zero if and only if t evaluates to a
singleton.

3.3.1 Array indexing

Arrays in Vec are just nested vectors, and as such are built up using the sing
and cons combinators. This may seem a strange way to construct arrays, as in
most (imperative) languages arrays are created in \one step" and their entries
can then be accessed and modi�ed, using operations such as the following:

make n a) [a; a; : : : ; a| {z }
n-times

] if n � 1

read m [a1; : : : ; an]) am if m � n

write [a1; : : : ; an] m b) [a1; : : : ; am�1; b; am+1; : : : ; an] if m � n

(with the operations resulting in an error when the side conditions are not
satis�ed). We begin our account of expressivity of Vec by de�ning the
operations above.

Since the indices (the m and n arguments in the examples above) refer
to the lengths (i.e. sizes) of vectors, they have to be represented in Vec by
terms of type sz, rather than nat. The types of the operations are thus

make : sz ! � ! vec �
read : sz ! vec � ! �
write : vec � ! sz! � ! vec � :

CHAPTER 3. THE VEC LANGUAGE 61

The terms representing these operations are given below.

make � rec f:�n; x:ifs pred n then [x]
else x :: (f (pred n) x)

read � rec f:�n; x:ifs pred n then hd x
else f (pred n) (tl x)

write � rec f:�x; n; y:ifs pred n
then ifs is sing x then [y]

else y :: (tl x)
else (hd x) :: (f (tl x) (pred n) y) :

We de�ne mat nat � vec (vec nat) to be the type of matrices of natural
numbers, represented as columns of rows. Then we can build matrices using
the operations given above

mat1 � make ~2 (make ~3 1)

mat2 � make ~3 (make ~1 2)

where 1; 2 : nat. Then

mat1) [[1; 1; 1]; [1; 1; 1]]

mat2) [[2]; [2]; [2]] :

It is easy to see that, when applied, the operations evaluate the way we ex-
pect, including evaluating to err when the array references are out of bounds:

read ~3 (read ~2 mat1)) 1

read ~3 (read ~2 mat2)) err

(similarly for write).

Note that our decision to use the sz type to represent array indices was
not merely our whim { it is easy to see that the types of Vec constructs do
not allow us to express, say, the operation make with its type being nat !
� ! vec � . The main reason is that the condition of the ifs conditional has to
be of type sz, and there is no way in Vec to convert a term of type nat to its
corresponding size. The absence of such natural numbers-to-sizes conversion
operation is not an oversight on our part, such an operation, expressed in
any way whatsoever, would be an unsurpassable barrier to successful shape
analysis (as discussed in detail in the Chapter 6), and would therefore thwart
the main objective of Vec.

CHAPTER 3. THE VEC LANGUAGE 62

3.3.2 Second order vector operations

Let us now turn our attention to some second order vector operations. We
claimed, in the �rst section of this chapter, that there was no need to in-
troduce additional vector combinators, such as map or fold, as Vec would
turn out to be powerful enough to express them. We will now present the
Vec representations of these second order operations (and of append and
zip). These operations typically evaluate according to the following rules:

map f [a1; : : : ; an]) [f a1; : : : ; f an]

fold f x [a1; : : : ; an]) f ha1; : : : f han; xi : : :i

append [a1; : : : ; am] [b1; : : : ; bn]) [a1; : : : ; am; b1; : : : ; bn]

zip [a1; : : : ; an] [b1; : : : ; bn]) [ha1; b1i; : : : ; han; bni]

(where zip applied to two vectors of unequal lengths results in an error). The
types of their Vec representations therefore are

map : (� ! � 0)! vec � ! vec � 0

fold : (� � � ! �)! � ! vec � ! �
append : vec � ! vec � ! vec �
zip : vec � ! vec � 0 ! vec (� � � 0) :

and the terms representing them are given below.

map � rec g:�f; x:ifs is sing x
then [f (hd x)]
else (f (hd x)) :: (g f (tl x))

fold � rec g:�f; x; y:ifs is sing y
then f hhd y; xi
else f hhd y; g f x (tl y)i

append � rec g:�x; y:ifs is sing x
then (hd x) :: y
else (hd x) :: (g (tl x) y)

zip � rec g:�x; y:ifs is sing x
then ifs is sing y then [hhd x; hd yi] else err

else hhd x; hd yi :: (g (tl x) (tl y))

CHAPTER 3. THE VEC LANGUAGE 63

Their evaluations give the intended results, as in

zip (read ~2 mat1) mat2) [h1; [2]i; h1; [2]i; h1; [2]i]

zip mat1 mat2) err :

We will in later examples use the uncurried versions of the above terms,
and we shall use primes to denote them, as in

zip0 : (vec �)� (vec � 0)! vec (� � � 0)

zip0 � �x:zip (fst x) (snd x) :

3.3.3 Linear algebra

We conclude the chapter with several operations over matrices of natural
numbers. We begin with matrix transposition:

transpose : mat � ! mat �
transpose � rec f:�x:ifs is sing (hd x)

then [map hd x]
else (map hd x) :: (f (map tl x))

We would now like to de�ne matrix multiplication, as an example of a
linear algebra operation only de�ned on matrices of matching sizes. To do
this we have to introduce some elementary algebraic operations on natural
numbers not expressible in the core Vec. So in the following we assume we
have combinators

+;�; �; = : nat� nat! nat

with the usual evaluation rules (with = representing the integer division).

Recall that the scalar product of two vectors of natural numbers is given
by

scalar [a1; : : : ; an] [b1; : : : ; bn]) a1 � b1 + : : :+ an � bn :

scalar is the curried version of the term scalar0 given by

scalar0 : (vec nat)� (vec nat)! nat

scalar0 � (fold + 0) Æ (map �) Æ zip0 :

where Æ represents the usual operation of function composition, that is t1 Æ t2
is syntactic sugar for �x:t1 (t2 x) .

CHAPTER 3. THE VEC LANGUAGE 64

Finally, matrix multiplication is given by

multiply : mat nat! mat nat! mat nat

multiply � �x; y: map (�z:
map (scalar z) (transpose y)) x :

When we multiply two matrices we get the expected results, as in

multiply mat1 mat2) [[6]; [6]]
multiply mat2 mat1) err :

Chapter 4

Shape analysis

This chapter introduces shapes and shape analysis and proves their main
properties, and as such represents the core part of the thesis. We begin the
chapter by de�ning a translation # from Vec to Size which maps a term in
Vec to its shape in Size. Shape of a term will typically be much simpler than
the term itself as the shape translation ignores all data { for example, the
shape of a matrix will be just a triple of consisting of the pair of its sizes and
the shape of its entries. Consequently, the evaluation of a shape will often
be much faster than that of the original term. This whole process, mapping
a term to its shape and then evaluating this shape, will be referred to as
shape analysis. As we have already stressed, we will concentrate on using
shape analysis for error detection and, in the �nal section of this chapter,
we will show that shape analysis reveals all shape errors in a term. Another
important result will show that shape analysis of a term terminates whenever
its evaluation does, thus demonstrating the viability of shape analysis as a
new kind of static program analysis.

The chapter is structured as follows. The �rst section introduces the
shape translation # from Vec to Size. In the second section we then apply
shape analysis to a variety of array-based programs. Finally, in the third,
rather technical section we prove some of the important properties of shape
analysis.

As we have showed in the previous chapter, Size is a sublanguage ofVec,
and we will not therefore distinguish operations on Size terms in Size from
those in Vec. Unless stated otherwise, we will assume that all operations

65

CHAPTER 4. SHAPE ANALYSIS 66

are taking place in Vec.

4.1 The shape translation

We begin by de�ning the shape translation # from Vec to Size. This
translation acts on both the types and the terms of Vec.

De�nition 4.1.1 The shape translation # of Vec types is a Size type de-
�ned inductively by

#Æ � un

#un � un

#sz � sz

#(vec �) � sz�#�

#(� � �0) � #� �#�0

#(� ! �0) � #� ! #�0 :

We say that #� is the shape of �.

Remarks

1. As there will be no danger of confusion, we shall use the same symbol
to denote the shape translation of both the types and terms (see
below). # will always bind tightest.

2. Note that # is the identity on the types of Size, indicating that Size
terms are \pure shapes".

3. The shape translation preserves the structure of a type, with two im-
portant exceptions: it ignores datum types, i.e. their shapes are the
unit, and it maps the type vec � to sz�#� . Thus a shape of a vector
is a pair of its length (a size) and the uniform shape of its entries.

De�nition 4.1.2 The shape translation # of Vec terms is a Size term
de�ned inductively using the rules in Fig 4.1. We say that #t is the shape of
t.

CHAPTER 4. SHAPE ANALYSIS 67

#x� � x#�

#sing � �x:hsucc zero; xi

#cons � �x; y:ifs eq x (snd y)

then hsucc (fst y); snd yi else err

#hd � snd

#tl � �x:ifs pred (fst x) then err

else hpred (fst x); snd xi

#length � fst

#c � c for other combinators c

#(�x�:t) � �x#�:#t

#(t1 t2) � #t1 #t2
#(rec f:t) � rec f:#t

#(ifs t then t1 else t2) � ifs #t then #t1 else #t2

Figure 4.1: Shape translation of terms

Remarks

1. The process of taking the shape of a term and evaluating it will be
loosely referred to as shape analysis.

2. As before, we can see that # is the identity on Size.

3. The shapes of operations on datum types, such as those introduced in
Section 3.3, will be given in Section 4.2.

4. The most interesting part of Fig 4.1 is the shapes of vector combinators.
As we have already mentioned, the shape of a vector is a pair { its length
and the shape of its entries. Thus, for example, the shapes of length and
hd are the �rst and second projection, respectively. The shape of cons
is more complicated, as it has to ensure that all entries in a vector have
the same shape. Thus shape analysis of cons t1 t checks whether #t1
and snd #t (the shape of the entries of t) are equal, and returns error
otherwise. In this way shape analysis rejects any non-regular vectors,
that is nested vectors which are not arrays.

CHAPTER 4. SHAPE ANALYSIS 68

5. Being able to check for the equality of the shapes of entries of vectors
has been the rationale behind preventing the formation of, for example,
the type of vectors of functions (achieved by stratifying Vec types into
data and phrase types).

6. We can now also understand the decision to introduce the singleton,
rather than the customary empty vector, as the elementary vector com-
binator. Since an empty vector does not have any entries, shape anal-
ysis of a term such as cons t nil would be problematic (though not
impossible, as discussed in Section 6.4). So as not to complicate mat-
ters at this point, we have opted for preventing the formation of empty
vectors.

We extend # to operate on typing contexts in the obvious way:

#fx1 : �1; : : : ; xn : �ng = fx1 : #�1; : : : ; xn : #�ng :

The following lemma shows that # respects typing.

Lemma 4.1.3 If � ` t : � then #� ` #t : #�.

Proof. By induction on the height of derivation of � ` t : �.

As we have said before, we want to concentrate on error detection. The
terminology introduced in the following de�nition will thus be often used.

De�nition 4.1.4 We say that the evaluation of t results in a shape error
whenever t) err. If #t) err, we may say that shape analysis of t reveals a
shape error, or that t is ill shaped. It is well shaped otherwise.

Remark It is important to realise that not every error can be viewed as
shape error. For example, in most languages (integer) division by zero is
treated as error, but this kind of error, regardless of the way it is handled in
the operational semantics, cannot be detected by shape analysis, since shape
analysis does not distinguish zero from other integers (as they all have the
same shape, the unit).

Before we prove other claims about shape analysis and its ability to reveal
shape errors in Section 4.3, let us �rst illustrate its actions in the following
section.

CHAPTER 4. SHAPE ANALYSIS 69

4.2 Examples

We will now use the techniques of the previous section to analyse the Vec
terms de�ned in Section 3.3. Before we begin, we have to extend # to
cover the operations on datum types introduced in that section, namely the
algebraic operations on natural numbers. As it turns out there is essentially
only one way of doing that without compromising the important properties
of shape analysis (as described in the next section), and that is by letting

#n � un

#c � �x:un

where n 2 f0; 1; : : :g : nat and c 2 f+;�; �; =g : nat� nat ! nat. Note that
we then have

#(= h1; 0i)) un

regardless of the way division by 0 is treated in the operational semantics.

4.2.1 Vectors

We start with examples of shape analysis of vectors of natural numbers:

#[1; 1; 1]) h~3; uni

#[1; 2; 3]) h~3; uni

#[h1; 1i; h2; 2i; h3; 3i]) h~3; hun; unii

#[[1; 1]; [2; 2]; [3; 3]]) h~3; h~2; unii

#[[1]; [2; 2]; [3; 3]]) err :

Shape analysis of the term hd [[1]; [2; 2]; [3; 3]] illustrates the fact that even
terms whose evaluation does not result in a shape error may be ill shaped:

hd [[1]; [2; 2]; [3; 3]]) [1]

#(hd [[1]; [2; 2]; [3; 3]])) err :

On vectors of sizes, shape analysis gives the following results:

#[~1; ~1; ~1]) h~3; ~1i

#[h~1; 1i; h~1; 2i; h~1; 3i]) h~3; h~1; unii

#[~1; ~2; ~3]) err :

CHAPTER 4. SHAPE ANALYSIS 70

Note in particular the last example. Since the shape of a size is the size itself,
a vector with di�erent sizes as entries is ill shaped.

4.2.2 Array indexing

Let us now look at shape analysis of the array operations de�ned in Sec-
tion 3.3. As the shapes of the operations make, read and write themselves
are quite complex (and thus not very enlightening), we present here just the
shape of make:

#make � rec f: �n; x:ifs pred n then (�x:hsucc zero; xi) x
else (�x; y:ifs eq x (snd y) then hsucc (fst y); snd yi else err)

x (f (pred n) x) :

A careful study of the above shape reveals that it is operationally equivalent
to

�n; x:hn; xi :

The shapes of matrices then come out the way we expect:

#mat1) h~2; h~3; unii

#mat2) h~3; h~1; unii :

Thus we can see that the number of rows of a matrix t is fst #t and the
number of its columns is fst (snd #t).

The array access errors arising from incorrect applications of read or write
are revealed by shape analysis, as in

#(read ~3 (read ~2 mat1))) un

#(read ~3 (read ~2 mat2))) err :

4.2.3 Second order vector operations

The comment about the complexities of the shapes of array-indexing oper-
ations is true also for operations such as map and fold. It is therefore more
revealing to analyse applied operations, as in

#(map (�x:x) [1; 2; 3])) h~3; uni

#(map + [h1; 2i; h3; 4i; h5; 6i])) h~3; uni

#(fold + 0 [1; 2; 3])) un :

CHAPTER 4. SHAPE ANALYSIS 71

Note also the following example

#(map = [h1; 0i; h2; 0i; h3; 0i])) h~3; uni :

Examples of shape analysis of terms involving zip and append are given
below.

#(zip mat1 mat2)) err

#(append [1; 2; 3] [4; 5; 6])) h~6; uni

#(append [[1; 1]; [2; 2]; [3; 3]] [[1]; [2]; [3]])) err :

Shape analysis of the last example reveals a shape error since the two argu-
ments have entries of di�erent lengths.

4.2.4 Linear algebra

We conclude this section with shape analysis of the linear algebra operations
de�ned in Section 3.3.

The shape of transpose is operationally equivalent to

#transpose � �x:hfst (snd x); hfst x; snd (snd x)ii :

So the shape of transpose simply swaps the two sizes representing the sizes
of a matrix. Similarly

#multiply � �x; y:ifs eq (fst (snd x)) (fst y)
then hfst x; hfst (snd y); unii
else err :

Shape analysis of matrix multiplication gives the expected results, as in

#(multiply mat1 mat2)) h~2; h~1; unii

#(multiply mat2 mat1)) err :

4.3 Properties of shape analysis

In this section we prove several important properties of shape analysis, the
most signi�cant of which are the following two claims:

CHAPTER 4. SHAPE ANALYSIS 72

� Whenever the evaluation of a term results in a shape error, then its
shape analysis reveals a shape error (Corollary 4.3.5).

� Whenever the evaluation of a term terminates, then so does that of its
shape (Corollary 4.3.7).

Thus the �rst claim asserts that shape analysis does, indeed, reveal all shape
errors in a term, while the second claim is necessary for regarding shape
analysis as a viable kind of static program analysis. These two results are
corollaries of Theorem 4.3.4 which we will prove shortly, but �rst we present
three simple lemmas. The �rst of these shows that the eq combinator behaves
the way we expect:

Lemma 4.3.1 If eq t t0) zero, then t = t0.

Proof. By induction on the evaluation complexity of eq t t0. Then by case
analysis on the last step of the evaluation. There are only four possible cases:

1.

t) un

eq t) eq un
t0) un

eq t t0) zero

Therefore t = t0.

2.

t) zero

eq t) eq zero
t0) zero

eq t t0) zero

Therefore t = t0.

3.

t) succ u

eq t) eq (succ u)
t0) succ v eq u v) zero

eq t t0) zero

By applying the induction hypothesis to eq u v we get u = v (actually
u � v since they are values) and succ u � succ v. Therefore t = t0.

CHAPTER 4. SHAPE ANALYSIS 73

4.

t) hu1; u2i

eq t) eq hu1; u2i
t0) hv1; v2i and (eq u1 v1) (eq u2 v2)) zero

eq t t0) zero

where and � �x:�y:ifs x then y else x. By inspecting and we can see
that if it is to evaluate to zero, then both its arguments have to evaluate
to zero. So eq u1 v1) zero and eq u2 v2) zero. By the induction
hypothesis, u1 � v1 and u2 � v2 and therefore t = t0.

The next lemma describes the behaviour of err:

Lemma 4.3.2 t = err i� t) err .

Proof. The \if" direction is immediate. For the reverse direction, let us
consider, for example, the terms t and err in the context (�x:un) 2 to see
that t) err whenever t = err.

The following lemma, the last one before the proof of Theorem 4.3.4,
shows that # is well-behaved with respect to substitution.

Lemma 4.3.3 #(t[t0=x]) � #t[#t0=x] .

Proof. By induction on the structure of t.

The following theorem shows that # respects evaluation, with the possible
exception of detecting extra errors.

Theorem 4.3.4 If t) r, then #t = #r or #t) err.

Proof. By induction on the evaluation complexity of t. Then by case
analysis on the last step in the evaluation. We will present only the more
complicated of these cases, the result for the rest is proved similarly. Let us
suppose that #t 6) err (and thus, by Lemma 4.3.2, #t 6= err). We then also
get that #t) v implies #t = v, by Lemma 3.2.5, and the proof becomes
mainly a matter of equational reasoning.

CHAPTER 4. SHAPE ANALYSIS 74

1. If t is a value, then the result follows immediately.

2. Suppose t � t1 t2 and the last step in the evaluation of t was

t1) �x:t01 t2) v0 t01[v
0=x]) v

t1 t2) v

Now #t � (#t1) (#t2). By applying the induction hypothesis to t1
and t2, we get #t1 = #(�x:t01) � �x:#t01 and #t2 = #v0.

(#t1) (#t2) = (�x:#t01) #v
0

= #t01[v
00=x] where #v0) v00

= #t01[#v
0=x]

� #(t01[v
0=x]) by Lemma 4:3:3

= #v by the induction hypothesis :

3.

t1) fst t2) hv; v2i

t1 t2) v

#t � (#t1) (#t2) = fst h#v;#v2i by the induction hypothesis
= fst hv0; v02i where #v) v0; #v2) v02
= v0

= #v :

Case t1) snd is proved analogously.

4.

t1) tl t2) [v]

t1 t2) err

#t = #tl (#sing #v) by the induction hypothesis
� (�x:t0) ((�x:h~1; xi) #v)

where t0 � ifs eq x (snd y) then hsucc (fst y); snd yi else err

= (�x:t0) ((�x:h~1; xi) v0) where #v) v0

= t0[h~1; v0i=x]
= err

� #v

CHAPTER 4. SHAPE ANALYSIS 75

5.

t1) length t2) v1 :: v2 length v2) m

t1 t2) succ m

#t = fst ((�x; y:t0) #v1 #v2)
where t0 � ifs eq x (snd y) then hsucc (fst y); snd yi else err

= ((�x; y:t0) v01 v
0
2)

where #v1) v01; #v2) v02
= fst hsucc (fst v02); snd v02i
= succ (fst v02) :

Since, by the induction hypothesis,

#(length v2) � fst #v2 = #m ;

we get
#t = succ #n

� #(succ n) :

6.

t0[rec f:t0=f]) v

rec f:t0) v

#t � rec f:#t0 = #t0[rec f:#t0=f]
� #(t0[rec f:t0=f])
= #v by the induction hypothesis :

Other cases are proved similarly.

We immediately get the following corollary which shows that all shape
errors are detected by shape analysis.

Corollary 4.3.5 If t) err, then #t) err.

Proof. Follows immediately from Theorem 4.3.4 since the only value equal
to the error is the error itself.

CHAPTER 4. SHAPE ANALYSIS 76

Remarks

1. The previous corollary is probably the single most important result in
this thesis, as it justi�es our claim of being able to detect all shape
errors in a term.

2. The converse of the previous corollary does not hold. As a counterex-
ample, consider the vector [[1]; [1; 1]]. This term is a value, but its
shape analysis reveals a shape error, since the two entries have di�er-
ent lengths.

To prove the next corollary, we need this simple lemma.

Lemma 4.3.6 Let r be a result, then the evaluation of #r terminates.

Proof. By induction on the structure of r.

The following corollary shows that the shape analysis of t terminates
whenever the evaluation of t does.

Corollary 4.3.7 If the evaluation of t terminates, then so does that of #t.

Proof. Suppose the evaluation of t terminates, i.e. t) r for some result
r. Theorem 4.3.4 says that either #t = #r or #t) err. In the latter case
the evaluation of #t obviously terminates. In the former case we can use
Lemma 4.3.6 to see that the evaluation of #r terminates and therefore so
does that of #t (by soundness).

Again, the converse does not hold, the reason being that shape of a term
may evaluate to err even when the term itself does not { this means that
certain subterms in the shape may not be evaluated. The term

h[~1; ~2]; rec f:fi

is an example of a term whose shape analysis terminates, even though its
evaluation does not. We also want to allow for the possibility of introducing
other datum operations whose evaluation may not terminate but whose shape
analysis does (shape analysis of such operations would typically be very easy
as their shapes would be trivial).

Chapter 5

Simplifying shapes

As we have seen in Section 4.2, the shapes of higher-order terms, as produced
by shape analysis, are often much more complicated than we would like
them to be and than is strictly necessary. For example, the shape of matrix
multiplication, as de�ned in Section 3.3, would not probably �t on one page
while there exists a much simpler, operationally equivalent shape, namely

�x; y:ifs eq (fst (snd x)) (fst y)
then hfst x; hfst (snd y); unii
else err :

Even though the two shapes give us the same assurances with regard to error-
checking, it would often be useful to get the simpler of the two as the result
of shape analysis. In this chapter we present a system capable of producing
simple shapes for (a subsystem of) Vec without using any elaborate theorem
proving techniques. Our hope is that this system, and the methods used, can
be extended to cover a larger part, or possibly all of Vec. With this in mind,
the chapter should be viewed as a basis for a possible way forward rather
than a de�nitive piece of work.

In the �rst section we introduce SizeC, an extension of the Size language,
as well as a reduction!sc on SizeC intended as a mechanism for simplifying
SizeC terms. The following section then introduces #C, an alternative shape
analysis of Vec. We will see that!sc is able to considerably simplify shapes
of many Vec terms.

77

CHAPTER 5. SIMPLIFYING SHAPES 78

5.1 Size with checks

We introduce a modi�ed version of the Size language called SizeC (standing
for Size with checks). Its type system is the same as that of Size, that is
given by

� ::= un j sz j � � � j � ! � :

As before, � will represent the function-free types.

SizeC terms are given by

t ::= x j c j �x�:t j t t j let x(t in t :

where c is a combinator, the set of which is shown in Fig 5.1. In particular,
SizeC has neither conditionals nor recursion. To partially compensate for
this omission, the set of combinators is augmented by the and and not com-
binators. We also introduce the combinator ~+ representing the operation
of addition on sizes (of course, other algebraic operations on sizes can be
introduced as well, but in the following we will need only addition).

un : un

pair�;�
0

: � ! �0 ! � � �0

fst�;�
0

: � � �0 ! �

snd�;�
0

: � � �0 ! �0

zero : sz

succ : sz! sz

pred : sz! sz

eq� : � ! � ! sz

and : sz! sz! sz

not : sz! sz

~+ : sz! sz! sz

err� : �

Figure 5.1: SizeC combinators and their types

The main new feature in SizeC is the let constructor. Its type is as usual,

CHAPTER 5. SIMPLIFYING SHAPES 79

given by the inference rule below

Let
� ` t0 : �0 �; x : �0 ` t : �

� ` let x(t0 in t : �

Its semantics will be standard { when evaluating let x(t0 in t �rst evaluate
t0 to some v, substitute the result for x into t and then evaluate t[v=x].

We may contract successive let's as below:

let x1; : : : ; xn = t1; : : : ; tn in t stands for
let x1 (t1 in (: : : let xn (tn in t) :

The main reason for introducing the let constructor is to allow us to build
"checks for errors" into SizeC terms. We therefore introduce the following
syntactic sugar:

check t0 then t � let x(t0 in t; x 62 FV (t)

Thus when evaluating a term check t0 then t one �rst evaluates t0, checks for
errors and then evaluates t. check's will thus serve to keep track of those
subterms which may evaluate to an error.

We introduce the following notation to improve readability:

check t1; : : : ; tn then t stands for check t1 then (: : : check tn then t)
t1 = t2 stands for pred (not (eq t1 t2)) :

The latter notation will often be used in combination with check's to test for
equality of two terms as t1 = t2 will reduce to err whenever t1 and t2 are not
equal. The term check t1 = t2 then t thus means \return the value of t if t1
and t2 are equal and an error otherwise".

De�nition 5.1.1 A safe term s is a term given by the following grammar

s ::= x j c (6� err) j �x�:t j pair s j pair s s j fst s j snd s
succ s j eq s j eq s s j and s j and s s j not s :

Remarks

1. We shall use s to denote safe terms. Terms which are not safe will be
denoted ns.

CHAPTER 5. SIMPLIFYING SHAPES 80

2. Safe terms can never reduce to err, not even under any substitution of
other safe terms for their free variables. This means that we can safely
�-reduce applications with safe terms as arguments as then there is no
risk of losing an error.

The reduction rules for SizeC are generated by the base reductions !sc

given in Fig 5.2 and 5.3. Most of the rules (those for applications and con-
cerning let) are analogous to those of Moggi's �c calculus (see [Moggi, 1989]).

ns t !sc let x(ns in x t ; x fresh

s ns !sc let x(ns in s x ; x fresh

(�x: t) s !sc t[s=x]

fst ht1; t2i !sc check t2 then t1
snd ht1; t2i !sc check t1 then t2
pred (succ t) !sc t

pred zero !sc err

let x(t in x !sc t

let x(s in t !sc t[s=x]

let x(err in t !sc err

let x(t in err !sc err

let x((let y (t0 in t1) in t2 !sc let y; x(t0; t1 in t2

Figure 5.2: Base reductions for SizeC

The (mutually exclusive) rules at the top of the �gure describe the reduc-
tion of a function application. The algorithm for deciding which rule applies
is simple. We �rst reduce the function to its normal form. If it does not
reduces to a value, we use the �rst rule. If it does reduce to a value, we
reduce the argument. If the argument does not reduce to a value, we use
the second rule. Finally, if both the function and the argument reduce to
values, either they together form a value or one of the following rules applies
(depending on the value of the function).

Some of the other rules are modi�ed so as to keep track of (potential)
errors. Thus terms which would have been discarded in, say, the Size reduc-

CHAPTER 5. SIMPLIFYING SHAPES 81

and zero t !sc t
and t zero !sc t
and (succ t1) t2 !sc check t1; t2 then ~1

and t1 (succ t2) !sc check t1; t2 then ~1

not zero !sc ~1

not (succ t) !sc check t then zero

eq zero t !sc t
eq t zero !sc t
eq (succ t1) (succ t2) !sc eq t1 t2
eq un t !sc check t then zero

eq t un !sc check t then zero

eq t t !sc check t then zero

eq ht1; t2i ht
0
1; t

0
2i !sc and (eq t1 t

0
1) (eq t2 t

0
2)

Figure 5.3: Equality reductions in SizeC

tion system (such as t2 in fst ht1; t2i) are kept as checks. Those checks which
are guaranteed not to reduce to an error can then be eliminated by the rule

let x(s in t !sc t[s=x]

This means that only checks of the form pred t1 or f t1, where f is a variable,
cannot be eliminated. check's can be propagated towards the head of a term,
though not across a �. Similarly, terms containing errors reduce to an error
(unless the error is under a �) { we have contemplated introducing such
rules already in Section 2.2.8. The rules in Fig 5.3 are mostly familiar (with
some added checks to ensure no potential errors are lost) with the following
exception:

eq t t!sc check t then zero

This rule is not strictly necessary but it is useful as it allows us to simplify
terms such as eq x x (terms like this arise quite often in the shapes of Vec
terms, see the following section). !sz can considerably simplify some SizeC
terms as we will see in the following section when we apply it to a number
of examples.

The standard reduction lemmas about !sz (such as subject reduction)

CHAPTER 5. SIMPLIFYING SHAPES 82

can be proved but, as their proofs are similar to those for Size and Vec, we
omit them.

Theorem 5.1.2 ! is conuent and strongly normalising.

Proof. Analogous to the proof of those properties for the �c calculus (see
[Moggi, 1988] and [Moggi, 1989]).

The operational semantics)sc of SizeC is an extension of that of Size.
Semantics of the new constructs is given in Fig 5.4 { semantics of the rest
is the same as in Size and therefore omitted. Operational equivalence �sc

is also de�ned in the standard way (see e.g. De�nition 2.1.36). The usual
suite of lemmas listing)sc properties, similar to that presented towards the
end of Chapter 2, can then be proved, but we omit it. Note that, given
the absence of general recursion, every SizeC term has a value (which is, of
course, unique).

t0)sc v
0 t[v0=x])sc r

let x(t0 in t)sc r

t0)sc err

let x(t0 in t)sc err

t1)sc not t2)sc zero

t1 t2)sc succ zero

t1)sc not t2)sc succ v

t1 t2)sc zero

t1)sc and t2)sc v

t1 t2)sc and v

t1)sc and zero t2)sc v

t1 t2)sc v

t1)sc and (succ v) t2)sc v
0

t1 t2)sc succ zero

Figure 5.4: Operational semantics of SizeC

Analogously as in Size can soundness of the calculus be proved:

Theorem 5.1.3 (Soundness theorem). Let t be a closed term. If t =sc t
0

then t �sc t
0.

Proof. Analogous to the proof of the soundness theorem for Size.

CHAPTER 5. SIMPLIFYING SHAPES 83

In the rest of this chapter, we shall omit the subscripts as in)sc as it is
unlikely to cause any confusion.

5.2 Shape analysis with checks

The reason we introduced SizeC, as we had Size before, is that SizeC will
be the target language of (a variant of) shape analysis of Vec (we shall use
#C to denote this alternative shape analysis). As before, the main goal is
for #C to be \sound", that is to satisfy (the equivalent of) Theorem 4.3.4,
which says

t)vc r implies #Ct � #Cr or #Ct) err :

The de�nition of #C is essentially the same as that of # (and its action
on types is completely unchanged) with the following two exceptions. It is
not diÆcult to see that due to the lack of the recursion constructor, SizeC
cannot, in general, express the shapes of Vec terms involving recursion and
we thus put

#C(rec f:t) � err

(which amounts to saying that we cannot analyse terms involving recursion).
Of course, there are cases when the shape of a term involving recursion
is expressible in SizeC, but detecting such cases would typically require a
detailed analysis of the term in question and, in particular, some form of
theorem proving. Combining shape analysis with di�erent analysing tech-
niques in this way would certainly be an option, but one we will not pursue
in this chapter.

We have more options when de�ning the shape of a conditional (for ex-
ample, letting

#C(ifs t then t1 else t2) � check #t;#t1 = #t2 then #t1

would be a possibility) but, so as not to complicate matters, we opt for the
same approach, that is we put

#C(ifs t then t1 else t2) � err :

The de�nition of #C is summarised in Fig 5.5.

CHAPTER 5. SIMPLIFYING SHAPES 84

#Cx
� � x#C�

#Csing � �x:hsucc zero; xi

#Ccons � �x; y:check x = (snd y)

then hsucc (fst y); snd yi

#Chd � snd

#Ctl � �x:check pred (pred (fst x))

then hpred (fst x); snd xi

#Clength � fst

#Cc � c for other combinators c

#C(�x
�:t) � �x#C�:#Ct

#C(t1 t2) � #Ct1 #Ct2
#C(rec f

�:t) � err

#C(ifs t then t1 else t2) � err

Figure 5.5: Shape analysis in SizeC

Unfortunately, with shape analysis de�ned in this way, the shapes of
many Vec terms, such as those de�ned in Section 3.3, will be errors since
they typically involve recursion (and conditionals). Such a system would
not be very useful, and we therefore extend Vec with additional vector
combinators, such as

map : (� ! � 0)! vec � ! vec � 0

fold : (� � � 0 ! � 0)! � 0 ! vec � ! � 0

zip : vec � ! vec � 0 ! vec (� � � 0)
append : vec � ! vec � ! vec �
transpose : mat � ! mat � :

Programming language of this style is very similar to skeleton-based lan-
guages, (see [Darlington et al., 1993] or [Skillicorn, 1990]) and as such is well
suited for parallelisation.

CHAPTER 5. SIMPLIFYING SHAPES 85

The shapes of these combinators are expressible in SizeC as follows:

#Cmap � �f; x:hfst x; f (snd x)i
#Cfold � �f; x; y:check (f (snd y)) = x then x
#Czip � �x; y:check (fst x) = (fst y) then hfst x; hsnd x; snd yii
#Cappend � �x; y:check (snd x) = (snd y) then h(fst x)~+(fst y); snd xi
#Ctranspose � �x:hfst (snd x); hfst x; snd (snd x)ii :

Of the shapes above, perhaps the only debatable one is that of fold { we check
whether one application of the function we are folding doesn't change the
shape of the result (and return an error otherwise). This is a safe approach
though clearly it results in shape analysis returning an error more often than
would be desirable { operations such as folding of cons will be analysed as
ill-shaped. Folding of data-based operations, though, will not typically cause
any problems.

This de�nition of #C satis�es the following equivalent of Theorem 4.3.4:

Theorem 5.2.1 Let t be a closed Vec term. If t)vc r, then either #Ct =
#Cr or #Ct) err.

Proof. The proof is analogous to the proof of Theorem 4.3.4 and is therefore
omitted.

The previous theorem shows that we can safely replace shapes by their
\simpli�ed" versions. We will now demonstrate the simplifying power of!sc

on the following examples.

We can express matrix multiplication in (the extended) Vec as follows:

multiply : mat nat! mat nat! mat nat

multiply � �x; y:map (�z:map (scalar z) (transpose y)) x

where scalar0 is the term (fold 0 +) Æ (map �) Æ zip0 (as before, prime denotes
the uncurried version of a term). The shape of multiply is then a term in
SizeC, though still far from the simple shape we eventually want to get:

CHAPTER 5. SIMPLIFYING SHAPES 86

#Cmultiply � �x; y:((�f; x:hfst x; f (snd x)i)
(�z:((�f; x:hfst x; f (snd x)i)

(((�x; y:(�z:
(((�f; y; z:check (f (snd z)) = y then y)

(�x:un)) un)
(�y:((�f; y:hfst y; f (snd y)i) (�x:un))

((�x:((�x; y:
check fst x = fst y
then hfst x; hsnd x; snd yii)

(fst x))
(snd x))

y))
z))

hx; yi)
z))
((�x:hfst (snd x); hfst x; snd (snd x)ii) y)))

x

Fortunately, its normal form is much simpler:

#Cmultiply !� �x; y:check fst (snd x) = fst y
then hfst x; hfst (snd y); unii

(you can make sure of this by using the implementation described in Ap-
pendix B).

Other matrix operations expressible in this system are, for example, the
following operations on block matrices:

putdown : mat � ! mat � ! mat �
putdown � �x; y:append x y

and
putright : mat � ! mat � ! mat �
putright � �x; y:map append0 (zip x y)

(where putdown places the second matrix below the �rst while putright places

CHAPTER 5. SIMPLIFYING SHAPES 87

it to the right). Their shapes then reduce the way we would expect:

#Cputdown !� �x; y:check snd x = snd y
then h(fst x)~+(fst y); snd xi

#Cputright !� �x; y:check fst x = fst y; snd (snd x) = snd (snd y)
then hfst x; h(fst (snd x))~+(fst (snd y)); snd (snd x)ii

Other examples of array-based operations and their shapes can be found in
the implementation.

It turns out that we can simplify a signi�cant proportion of shapes of
array-based terms. Of course, the resulting shape (the normal form) is not
guaranteed to be the simplest existing equivalent, and sometimes additional
analyses can be employed to �nd a simpler, operationally equivalent term.
These analyses might range from the simple (such as eliminating the superu-
ous check in check t0; t0 then t) to the sophisticated that use theorem-provers
(such as eliminating the second check in check t0 = ~1; t0 then t). Clearly,
the type of analysis one would choose depends both on the time (and the
computing power) one is willing to spend, and on the urgency of getting as
simple result as possible.

Chapter 6

Extending shape analysis

The Vec language, as presented in Chapter 3, was designed as a minimal
language supporting vectors suitable for shape analysis. As such, it lacks
many features commonly found in other functional languages and program-
ming in Vec directly is therefore not as eÆcient as would be desirable. Even
more importantly, some fundamental operations cannot even be expressed in
it (we will talk about these shortly). In this chapter we will discuss possi-
ble extensions of Vec and investigate whether and how shape analysis can
be extended to cover them and still retain the properties demonstrated in
Chapter 4. Much of this chapter can be viewed as a discussion of the possible
directions of future work.

The �rst section introduces the notion of a shapely operation and explains
why these operations are fundamental to successful shape analysis. The
second section then studies data-based conditionals and ways of adding them
to the language. The third and fourth sections then examine the interaction
between shape analysis and two di�erent notions of polymorphism.

6.1 Shapely operations

We will now try to determine the criteria for identifying operations that can
be added to Vec without compromising its shape analysis. In particular, we
want to preserve the property stated in Theorem 4.3.4:

t) r implies #t �= #r or #t) err :

88

CHAPTER 6. EXTENDING SHAPE ANALYSIS 89

Moreover, we want to minimise the situations when the latter case arises {
optimally, #t would evaluate to err only when there is a legitimate reason
for regarding the term t as ill-shaped. Note that we can add any operation
to Vec by letting its shape to be err { the above claim would then hold,
but shape analysis of such operations would not produce any useful infor-
mation, so this is not want we want. As we already discussed briey in the
Introduction, shape analysis can succeed only if the operations involved are
shapely.

De�nition 6.1.1 We say that an operation is shapely if the shape of its
result is determined by the shape of its argument(s). The operation is non-
shapely otherwise.

The previous de�nition is rather informal. There is, though, a related notion
of a shapely natural transformation in the categorical semantics for shape,
see [Jay, 1995].

Vec was designed so that all operations expressible in it were shapely
(with the possible exception of revealing a shape error). Let us consider,
for example, the operation append de�ned in Section 3.3 { the shape of the
resulting vector, i.e. its length, can be determined once the lengths of the
two input vectors are known:

#(append [1; 2; 3] [4; 5]) �= #([1; 2; 3]) ~+ #([4; 5])
�= ~3 ~+ ~2
�= ~5

where ~+ is the addition on sizes { this can already be de�ned in Vec using
recursion.

On the other hand, �ltering a vector of integers, say by the predicate
> 0, is an example of a non-shapely operation { given only the length of the
input vector we cannot determine the length of the result as this depends on
the entries of the input, that is data. Had we added to Vec a combinator
�lter : (nat ! bool) ! vec nat ! vec nat with the usual reduction rules
(though one has to be careful when dealing with singleton vectors)

�lter f [t] !vc [t]
�lter f (t1 :: t) !vc t1 :: (�lter f t) when f t1

�lter f t otherwise

CHAPTER 6. EXTENDING SHAPE ANALYSIS 90

(and equivalent operational semantics rules), we would not have been able
to de�ne #�lter such that we would have, for any t : vec nat,

�lter t) v implies #�lter #t �= #v :

The only way to add �lter to the language, and still preserve the equivalent
of Theorem 4.3.4 would be to put

#�lter � �x; y:err or #�lter � err

which would amount to admitting defeat as then basically any term involving
�lter would be regarded by shape analysis as ill-shaped.

We can now better understand some of the design decisions taken when
Vec was introduced. The overriding concern was to ensure that only shapely
operations were expressible in the language. The decision to introduce shape-
based conditionals, that is conditionals branching according to a size, is a
case in point, since conditionals branching according to a boolean (a datum)
are, in general, non-shapely (we shall discuss such conditionals in the next
section).

We have already mentioned, in Section 3.3, that we cannot introduce to
the language the operation nat to sz : nat! sz converting a natural number
to the corresponding size. Since

#(nat! sz) � un! sz ;

the only shapely operations of type nat! sz, apart from the ubiquitous err,
are (those operationally equivalent to) either �x:err or �x:~n for some ~n : sz,
i.e. only the constant functions.

Of course, one can have a conversion going the other way sz to nat : sz!
nat with the reduction rules

sz to nat zero !vc 0
sz to nat (succ n) !vc 1 + (sz to nat n) :

and its shape given by
#sz to nat � �x:un :

This operation can actually be already de�ned in Vec using the recursion
operator.

CHAPTER 6. EXTENDING SHAPE ANALYSIS 91

We can see that there are operations, such as �lter, which can never be
successfully analysed. Fortunately, many array-based scienti�c computations
of interest, such as almost all linear algebra operations, are, in fact, shapely.
Moreover, shape analysis can still be of use even when a system allows the
construction of non-shapely operations. In such cases it can be used as
the basis for a \soft-shaping" analysis (analogous to soft typing), one which
gives non-trivial results for some terms only, and would give the \can not
be determined" answer for the rest (the simplest, though not necessarily the
most useful, way to achieve this would be simply to let the shape of any non-
shapely combinator or construct be err, as discussed above). Alternatively,
shape analysis of the shapely parts can be combined with evaluation of the
remainder. Of course, this latter approach is more suited to a dynamic
analysis then a static one [Jay, 1996].

6.2 Data conditionals

One feature notably missing in Vec is a data conditional, i.e. a conditional
branching according to a value of type nat (or bool or any other datum type).
The only conditional constructor in Vec, ifs, branches according to a size,
that is a shape, and as we discussed in the previous section, there is no (and
there can not be any) nat to sz conversion operation, except a constant one.
This means, for example, that the factorial function on natural numbers is
not expressible in the language. The de�nition of the factorial would look
something like

fact � rec f nat!nat:�xnat:ifs x = 0 then 1 else x � (f (x� 1))

but this expression is ill-typed { the type of the condition x = 0 could be
either nat or bool, depending on the type of =, but it cannot be sz.

The inability to de�ne functions such as the factorial on natural numbers
is unfortunate, but the omission of data conditionals from the language is
not an oversight on our part, as these are not, at least in their general form,
shapely constructs. This can readily be seen from the following example.

Suppose we introduce such a term constructor, if� t then t1 else t2 : �

CHAPTER 6. EXTENDING SHAPE ANALYSIS 92

where t : nat and t1 and t2 are of type � and the usual rules such as

if 0 then t1 else t2 !vc t1
if n then t1 else t2 !vc t2 for numeral n 6� 0
if err then t1 else t2 !vc err :

What could the shape of this construct be? Clearly, since shape analysis
should respect the typing (see Lemma 4.1.3), the type of the shape of the
conditional has to be #�. Consider now the following two reductions:

(�xnat:if x then t1 else t2) 0 !vc t1
(�xnat:if x then t1 else t2) 1 !vc t2

But, regardless of what we de�ne the shape of if to be, we get

#((�xnat:if x then t1 else t2) 0) � (�xun:#(if x then t1 else t2)) un
� #((�xnat:if x then t1 else t2) 1)

and thus
#t1 � #t2 :

In other words, if the two branches of a data conditional have di�erent shapes,
shape analysis can produce wrong shapes. This is not surprising, since the
choice of the branch depends on a datum, and if the shapes of the branches
di�er, the construct is non-shapely. This means that shape analysis of a term
such as

if t then [1; 2; 3] else [1; 2; 3; 4]

cannot always give the correct result. The most we can hope for is to force
shape analysis to reveal a shape error in such cases. We now present three
possible ways of adding data conditionals to Vec, each with its strengths
and weaknesses.

The simplest approach would be to simply ignore the problem, and shift
the responsibility for ensuring this equality to the programmer. We could
then have data conditionals with branches of any type, and its shape could
be given by

#(if t then t1 else t2) � (�x:#t1) #t

(where x is a fresh variable, and the application is there only to \check"
whether #t is not an error. We could equally well replace #t1 by #t2,

CHAPTER 6. EXTENDING SHAPE ANALYSIS 93

as this approach would give correct shapes only when #t1 and #t2 were
operationally equal.) Of course, (the equivalent of) Theorem 4.3.4 would
then have to be stated in terms of \well-shaped" terms only, that is terms
with the two branches of any data conditional having the same shape.

A more constructive way would be to let shape analysis itself determine
the equality of the shapes by letting, say,

#(if t then t1 else t2) � (�x:ifs (eq #t1 #t2) then #t1 else err) #t

where, as above, x is fresh. This approach would mean that t1 and t2 had to
be of a type whose shape supports equality, probably of ground type. How-
ever, the problem with this approach would be in the evaluation { were if lazy
(as it probably would be, otherwise why not introduce it as a combinator),
only one of t1 and t2 would be evaluated when evaluating if t then t1 else t2,
while both #t1 and #t2 would be evaluated when evaluating its shape. When
considered together with recursion, this would mean that shape analysis of
terms such as fact would not terminate even when the evaluation of the term
itself did. Theorem 4.3.4 would have to be modi�ed accordingly.

Another way to introduce data conditionals (and avoid non-terminating
analyses) is to restrict the type of the recursion. We know, without unravel-
ling the recursion, what the shape of a recursive function over, say, integers
(such as the factorial) should be { such a function either always returns an
error (and its shape is thus equivalent to either err#(int!int) or �x#int:err#int)
or it returns a non-error integer. Since all such integers have the same shape,
the shape of the function has to be (equivalent to) �x#int:un. We can gen-
eralise this observation to tuples of datum types (in other words, ground
discrete types �) { for each such type �, there is a canonical non-error shape
(denoted bang#�) which is just a tuple of un. The shapes of functions over
such types � then have to be equivalent to one of err#(�!�), �x#�:err#� or
�x#�:bang#�. If we restrict the recursion construction rec f�:t to types � of
the form �! � only, we can put

#(rec f �!�:t) � #t[�x#�:bang=f] :

Shape analysis would then retain the property to detect all shape errors,
and would now always terminate (since shapes would not involve recursion).
The factorial function would be expressible, but we would lose general re-
cursion and with it much of expressibility of Vec. As a partial compensa-
tion, we could introduce new combinators, such as the iterator iter or some

CHAPTER 6. EXTENDING SHAPE ANALYSIS 94

second-order vector combinators such as map and fold. A similar approach
to avoiding non-terminating analyses was adopted in [Jay et al., 1997].

6.3 Data polymorphism

Vec is a simply typed language { each term has exactly one type in a given
context. However, a majority of functional (and, indeed, imperative) lan-
guages in use today support some kind of type polymorphism. The kind
used most often is undoubtedly the Hindley-Milner style of polymorphism.
First introduced by Milner in [Milner, 1978], building on the ideas from
[Hindley, 1969], this kind of polymorphism allows us to dispense with type
annotations in terms. The (raw) terms are generated by the following gram-
mar

t ::= x j �x:t j t t j let x = t in t :

One can then infer the types a term can have. Of course, a term such as �x:x
can have many types, in fact any type of the form � ! � would do. Similarly
the type of �f:�x:f(x) can be any type of the form (� ! �)! � ! � . This
suggests a way to describe the types of terms using type variables. One can
then get any type a term can have by substituting types for these variables.
The types system then may look like this

� ::= � j � ! �

where � is a type variable (usually another layer of type schema is introduced
on top of the types �, but we shall not go into the details as they are well
known and documented).

This type system is at the core of many functional languages such as ML
[Harper et al., 1986] or Haskell [Hudak et al., 1992], and it would be natural
to ask whether we can extend Vec (and Size, naturally) with this kind of
polymorphism. Indeed we can, and the approach would be quite standard.
We would have to develop a type inference algorithm for such polymorphic
Vec along the lines of the algorithm W ([Tofte, 1990]), and some of the re-
sults in Chapters 2 and 3 would have to be modi�ed accordingly. The most
important observation from our perspective is that shape analysis would be
essentially unchanged, and the results corresponding to those from Chap-
ter 4 would still hold. This suggests that (Hindley-Milner) polymorphism

CHAPTER 6. EXTENDING SHAPE ANALYSIS 95

is orthogonal to shape analysis and that was also the reason we decided to
work with a simply-typed language { polymorphism does not bring any new
insights to the problem and would only complicate the presentation.

6.4 Shape polymorphism

Hindley-Milner polymorphism, discussed briey in the previous section, is
only one, though widely used, of many polymorphic type systems. In fact,
shape itself has led to the discovery of a new kind of polymorphism, one
closely connected to shape analysis.

An example of a data polymorphic operation is map { regardless of the
type of the list entries, the overall algorithm remains the same { go through
the list and apply the function being mapped to each entry. The type of map

typically is
map : (�! �)! list �! list �

with � and � ranging over types. It is easy to see that the same mechanism
can be applied when mapping a function over other data structures as well
{ whether we are mapping a function over a matrix or a tree, the algorithm
remains the same { go through all the data and apply the function to each.
Thus other types of map might be

map : (�! �)! mat �! mat �
map : (�! �)! tree �! tree � :

In general, the type of map might be any type of the form

map : (�! �)! F �! F � :

where F is a type constructor of a suitable kind. The question now arises
whether it is possible to describe the type and/or action of map uniformly.

We have already mentioned some of the recent approaches to this and
related issues (polytypism [Jeuring and Jansson, 1996], intensional polymor-
phism [Harper and Morrisett, 1995]). Shape theory suggests using shape
polymorphic type systems [Jay and Cockett, 1994]. In such a type system,
the type of map is parametric in the choice of the datatype constructor, cov-
ering thus all the cases mentioned above. ML has been extended with shape
polymorphism in the FML language [Bell�e et al., 1996].

CHAPTER 6. EXTENDING SHAPE ANALYSIS 96

Introducing shape polymorphism to Vec would allow us, for example, to
work with empty vectors using the combinator nil. As we already discussed
in Section 4.1, we have introduced the singleton as the elementary vector
constructor in order to be able to check for the equality of (the shapes of)
entries when consing additional elements, an ability essential for successful
shape analysis. This would not be possible with the simply typed version of
nil as the empty vector does not have any entries. On the other hand, had
nil been introduced as a shape polymorphic combinator, it would have been
able to represent the empty vector with entries of any shape, thus getting
around the problem. We are con�dent that shape analysis can be combined
with shape polymorphism in a single language, giving us both the safety of
shape analysis and the power of shape polymorphism. This remains to be
done in the future.

Chapter 7

Conclusions

Shape theory represents what we believe is the most general attempt to date
to unify the various notions of shape (the shape of an array, the shape of
a tree and so on) under a single framework. This uniform treatment of
shapes has important implications for programming language design as it
allows separate manipulations of shapes and data. Shape analysis, a branch
of shape theory, exploits this shape/data split by using shapes as a basis for
compile time program optimisations. These can range from speeding up the
program's performance to improved memory allocation. This thesis focused
on another application, using shape analysis for error detection.

Shape errors, that is errors arising from working with ill-formed or incom-
patible shapes, form an important class of program errors. Their examples
include zipping together vectors of unequal lengths or multiplying matrices
of ill-matched sizes. Signi�cantly, array access errors, an intensely studied
class of errors, can also be viewed in this light.

This thesis has concentrated on shape analysis (and error detection) of
arrays and array based programs. The Vec language, a functional language
based on the simply-typed lambda calculus supporting vectors, has been
introduced as a vehicle for this study. To ensure that shape analysis is able
to handle all Vec terms, several novel design decisions had to be made.
These included introducing the type of sizes, a new kind of natural numbers
used as vector lengths and treated as shapes.

Shapes of Vec terms have been isolated in its sublanguage Size. Size

97

CHAPTER 7. CONCLUSIONS 98

terms can be regarded as pure shapes, as they do not involve any data or
data-based computations.

Two kinds of shape analysis on Vec have been studied. The �rst one
has been de�ned as a translation mapping a term in Vec terms to its shape
in Size. The main technical result of the thesis then showed that shape
analysis of a Vec term respects its evaluation (with the possible exception
of detecting extra shape errors). Formally this can be expressed as

t) v implies #t � #v or #t) err :

A corollary of the above result showed that shape analysis detects all shape
errors. Another important result proved that shape analysis of a term ter-
minates whenever its evaluation does, a result essential for regarding shape
analysis as a static program analysis.

Later a modi�ed form of shape analysis has been introduced, mapping
Vec terms to their shapes in SizeC. The SizeC language, a variant of Size,
supports a novel kind of simplifying reduction on terms. Thus shape analysis
on SizeC, though suitable only for a restricted set of Vec terms, is able to
produce very simple shapes of some higher order terms, including matrix
multiplication. These shapes can then be used, for example, as a program
veri�cation tool.

Shape analysis similar to that presented here has already been used for
several important applications. It has been the basis for estimating paral-
lel execution costs of Vec programs in the PRAM setting as described in
[Jay et al., 1997]. Work is now under way to implement a prototype shape-
based Algol-like language, FISh (an acronym for Functional and Imperative
SHape) [Jay and Steckler, 1998]. FISh uses shape analysis to generate ef-
�cient implementations (with execution speeds comparable to those of im-
perative languages) of programs written in a high-level programming style,
similar to that supported by functional languages.

Shape analysis may in future be used both as an error detection and a
program optimisation tool. For example, it can be used in compilers to es-
timate the sizes of the data structures involved and thus improve memory
allocation { the FISh compiler uses shape analysis to avoid unnecessary box-
ing of data. The ability of shape analysis to detect array access errors can
also be exploited in new optimising techniques.

CHAPTER 7. CONCLUSIONS 99

Future work may extend shape analysis to other language constructs and
thus richer languages. Some of these extensions (data-based conditionals,
data and shape polymorphism) have already been discussed in this thesis. It
is hoped that, ultimately, shape analysis will be combined with other shape-
based features, such as shape polymorphism, in a single language which would
be able to provide unprecedented exibility and performance.

Bibliography

[Abramsky and Hankin (editors), 1987] Abramsky, S. and Hankin (editors),
C. (1987). Abstract Interpretation of Declarative Languages. Series in
Computers and Their Applications. Ellis Horwood.

[Aho et al., 1986] Aho, A., Sethi, R., and Ullman, J. (1986). Compilers:
Principles, Techniques and Tools. Addison-Wesley.

[Asperti and Longo, 1991] Asperti, A. and Longo, G. (1991). Categories,
Types and Structures : An introduction to category theory for the work-
ing computer scientist. Foundations of Computing Series. Massachusetts
Institute of Technology.

[Asuru, 1992] Asuru, J. (1992). Optimization of array subscript range checks.
ACM Letters on Programming Languages and Systems, 1(2):109{118.

[Barendregt, 1984] Barendregt, H. (1984). The Lambda Calculus: Its Syntax
and Semantics. North Holland. revised edition.

[Barendregt, 1992] Barendregt, H. (1992). Lambda calculi with types. In
Abramsky, S., Gabbay, D., and Maibaum, T., editors, Handbook of Logic
in Computer Science, volume 2, pages 1{116. Oxford University Press.

[Barr and Wells, 1990] Barr, M. and Wells, C. (1990). Category Theory for
Computing Science. International Series in Computer Science. Prentice
Hall.

[Bell�e et al., 1996] Bell�e, G., Jay, C. B., and Moggi, E. (1996). Functorial
ML. In PLILP '96, volume 1140 of Lecture Notes in Computer Science,
pages 32{46. Springer Verlag.

100

BIBLIOGRAPHY 101

[Bell�e and Moggi, 1997] Bell�e, G. and Moggi, E. (1997). Typed intermediate
languages for shape-analysis. In Proceedings of Rewriting Techinques and
Applications 1997. to appear.

[Blelloch, 1992] Blelloch, G. (1992). NESL: a nested data parallel language
(version 3.1). Technical Report CMU-CS-95-170, School of Computer Sci-
ence, Carnegie-Mellon University.

[Blelloch et al., 1991] Blelloch, G., Chatterjee, S., and Fisher, A. (1991). Size
and access inference for data-parallel programs. In ACM SIGPLAN '91
Conference on Programming Language Design and Implementation, pages
130{144.

[Ching, 1986] Ching, W. (1986). Program analysis and code generation in an
APL/370 compiler. IBM Journal of Research and Development, 30(6):594{
602.

[Church, 1940] Church, A. (1940). A formulation of the simple theory of
types. Journal of Symbolic Logic, 5:56{68.

[Cormen et al., 1990] Cormen, T., Leiserson, C., and R.L.Rivest (1990). In-
troduction to Algorithms. MIT Press, McGraw-Hill, New York.

[Cousot and Cousot, 1979] Cousot, P. and Cousot, R. (1979). Systematic
design of program analysis frameworks. In Proceedings of the Sixth ACM
Annual Symposium on Programming Languages, pages 269{282.

[Cousot and Halbwachs, 1978] Cousot, P. and Halbwachs, N. (1978). Auto-
matic discovery of linear constraints among variables of a program. In
Conference Record of the 5th ACM Symposium on Principles of Program-
ming Languages, pages 84{97.

[Curry, 1934] Curry, H. (1934). Functionality in combinatory logic. Proc.
Nat. Acad. Science USA, 20:584{590.

[Darlington et al., 1993] Darlington, J., Field, A., Harrison, P., Kelly, P.,
Wu, Q., and While, R. (1993). Parallel programming using skeleton func-
tions. In PARLE93, Parallel Architectures and Languages Europe: 5th
International PARLE Conference, pages 146{160.

BIBLIOGRAPHY 102

[Dershowitz and Jouannaud, 1990] Dershowitz, N. and Jouannaud, J.-P.
(1990). Rewrite systems. In van Leeuwen, J., editor, Handbook of Theo-
retical Computer Science, volume B. MIT Press.

[Du� et al., 1986] Du�, I., Erisman, A., and Reid, J. (1986). Direct Methods
for Sparse Matrices. Clarendon Press Oxford.

[Feautrier, 1991] Feautrier, P. (1991). Dataow analysis of scalar and array
references. International Journal of Parallel Programming, 20(1):23{53.

[Ghani, 1995] Ghani, N. (1995). Adjoint Rewriting. PhD thesis, University
of Edinburgh.

[Girard et al., 1989] Girard, J.-Y., Lafont, Y., and Taylor, P. (1989). Proofs
and Types, volume 7 of Tracts in Theoretical Computer Science. Cambridge
University Press.

[Gunter, 1992] Gunter, C. (1992). Semantics of Programming Languages.
Foundations of Computing. MIT.

[Gupta, 1993] Gupta, R. (1993). Optimising array bound checks using ow
analysis. ACM Letters on Programming Languages and Systems, 2:135{
150.

[Gustavson et al., 1970] Gustavson, F., Liniger, W., and Willoughby, R.
(1970). Symbolic generation of an optimal crout algorithm for sparse sys-
tems of linear equations. Journal of the ACM, 17(1):87{109.

[Harper et al., 1986] Harper, R., MacQueen, D., and Milner, R. (1986).
Standard ML. Technical Report ECS-LFCS-86-2, Edinburgh Univ., Dept.
of Comp. Sci.

[Harper and Morrisett, 1995] Harper, R. and Morrisett, G. (1995). Compil-
ing polymorphism using intensional type analysis. In Conference Record
of POPL '95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 130{141, San Francisco, California.

[Harrison, 1977] Harrison, W. (1977). Compiler analysis of the value ranges
for variables. IEEE Transactions on Software Engineering, 3(3):243{250.

BIBLIOGRAPHY 103

[Hindley, 1969] Hindley, R. (1969). The principal type-scheme of an object
in combinatory logic. Transactions of the American Mathematics Society,
146:29{60.

[Hindley and Seldin, 1986] Hindley, R. and Seldin, J. (1986). Introduction
to combinators and lambda calculus. Cambridge University Press.

[Hoogendijk, 1997] Hoogendijk, P. (1997). A generic theory of data types.
PhD thesis, Technische Universiteit Eindhoven.

[Hudak et al., 1992] Hudak, P., Peyton Jones, S., and Wadler, P. (1992). Re-
port on the programming language Haskell: a non-strict, purely functional
language, version 1.2. Technical report, University of Glasgow.

[Iverson, 1962] Iverson, K. (1962). A Programming Language. Wiley, New
York, NY.

[Jay, 1994] Jay, C. (1994). Matrices, monads and the fast fourier transform.
In Proceedings of the Massey Functional Programming Workshop 1994,
pages 71{80.

[Jay, 1995] Jay, C. (1995). A semantics for shape. Science of Computer
Programming, 25:251{283.

[Jay, 1996] Jay, C. (1996). Shape in computing. ACM Computing Surveys,
28(2):355{357.

[Jay and Cockett, 1994] Jay, C. and Cockett, J. (1994). Shapely types and
shape polymorphism. In Sannella, D., editor, Programming Languages and
Systems - ESOP '94: 5th European Symposium on Programming, Edin-
burgh, Lecture Notes in Computer Science, pages 302{316.

[Jay et al., 1997] Jay, C., Cole, M., Sekanina, M., and Steckler, P. (1997). A
monadic calculus for parallel costing of a functional language of arrays. In
Lengauer, C., Griebl, M., and Gorlatch, S., editors, Euro-Par'97 Parallel
Processing, volume 1300 of Lecture Notes in Computer Science, pages 650{
661. Springer.

[Jay and Ghani, 1995] Jay, C. and Ghani, N. (1995). The virtues of eta-
expansion. Journal of Functional Programming, 5(2):135{154.

BIBLIOGRAPHY 104

[Jay and Sekanina, 1997] Jay, C. and Sekanina, M. (1997). Shape checking
of array programs. In Harland, J., editor, Computing: the Australasian
Theory Seminar, Proceedings, 1997, volume 19 of Australian Computer
Science Communications, pages 113{121.

[Jay and Steckler, 1998] Jay, C. and Steckler, P. (1998). The functional im-
perative: shape! In Hankin, C., editor, Proceedings ESOP'98. to appear.

[Jeuring and Jansson, 1996] Jeuring, J. and Jansson, P. (1996). Polytypic
programming. In Launchbury, J., Meijer, E., and Sheard, T., editors,
Advanced Functional Programming, Second International School, volume
1129, pages 68{114. Springer-Verlag. Lecture Notes in Computer Science.

[Jones et al., 1993] Jones, N., Gomard, C., and P.Sestoft, editors (1993).
Partial Evaluation and Automatic Program Generation. International Se-
ries in Computer Science. Prentice-Hall.

[Jones and Nielson, 1992] Jones, N. and Nielson, F. (1992). Abstract inter-
pretation: a semantics based tool for program analysis. In Abramsky, S.,
Gabbay, D., and Maibaum, T., editors, Handbook of Logic in Computer
Science, volume 4, pages 527{636. Oxford University Press.

[Klop, 1980] Klop, J. (1980). Combinatory Reduction Systems. Number 127
in Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam.

[Klop, 1992] Klop, J. (1992). Term rewriting systems. In Abramsky, S.,
Gabbay, D., and Maibaum, T., editors, Handbook of Logic in Computer
Science, v.2. Oxford University Press.

[Kolte and Wolfe, 1995] Kolte, P. and Wolfe, M. (1995). Elimination of re-
dundant array subscript range checks. In Proceedings of the ACM SIG-
PLAN '95 Conference on Programming Language Design and Implemen-
tation, La Jolla, California, pages 270{278.

[Kumar et al., 1994] Kumar, V., Grama, A., Gupta, A., and Karypis, G.
(1994). Introduction to parallel computing : design and analysis of algo-
rithms. Benjamin/Cummings Pub. Co., Redwood City, California.

BIBLIOGRAPHY 105

[Lambek and Scott, 1986] Lambek, J. and Scott, P. (1986). Introduction to
Higher-Order Categorical Logic, volume 7 of Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press.

[Markstein et al., 1982] Markstein, V., Cocke, J., and Markstein, P. (1982).
Optimization of range checking. In Proceedings of the SIGPLAN '82 Sym-
posium on Compiler Construction, pages 114{119.

[Martin-L�of, 1984] Martin-L�of, P. (1984). Intuitionistic Type Theory. Bib-
liopolis.

[Meijer et al., 1991] Meijer, E., Fokkinga, M., and Paterson, R. (1991). Func-
tional programming with bananas, lenses, envelopes and barbed wire. In
Proceedings of the 5th ACM Conference on Functional Programming and
Computer Architecture, volume 523 of Lecture Notes in Computer Science,
pages 124{144. Springer Verlag.

[Milner, 1978] Milner, R. (1978). A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences, 17:348{375.

[Mogensen, 1986] Mogensen, T. (1986). The application of partial evalua-
tion to ray-tracing. Master's thesis, DIKU, University of Copenhagen,
Denmark.

[Moggi, 1988] Moggi, E. (1988). The Partial Lambda Calculus. PhD thesis,
University of Edinburgh.

[Moggi, 1989] Moggi, E. (1989). Computational lambda-calculus and mon-
ads. In 4th LICS Conf. IEEE.

[Nielson and Nielson, 1992] Nielson, F. and Nielson, H. (1992). Two Level
Functional Languages, volume 34 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press.

[Plotkin, 1975] Plotkin, G. (1975). Call-by-name, call-by-value and the �-
calculus. Theoretical Computer Science, 1.

[Sagiv et al., 1996] Sagiv, M., Reps, T., and Wilhelm, R. (1996). Solving
shape-analysis problems in languages with destructive updating. In 24th
ACM Symposium on Principles of Programming Languages, pages 16{31.

BIBLIOGRAPHY 106

[Skillicorn, 1990] Skillicorn, D. (1990). Architecture-independent parallel
computation. IEEE Computer, 23, No.12:38{51.

[Skillicorn, 1994] Skillicorn, D. (1994). Foundations of Parallel Program-
ming. Cambridge Series in Parallel Computation 6. Cambridge University
Press.

[Suciu and Tannen, 1994] Suciu, D. and Tannen, V. (1994). EÆcient com-
pilation of high-level data parallel algorithms. In Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures.

[Suzuki and Ishihata, 1977] Suzuki, N. and Ishihata, K. (1977). Implemen-
tation of array bound checker. In Proceedings of the 4th ACM Symposium
on Principles of Programming Languages, pages 132{143.

[Tofte, 1990] Tofte, M. (1990). Type inference for polymorphic references.
Information and Computation, 89:1{34.

[Xi and Pfenning, 1997] Xi, H. and Pfenning, F. (1997). Eliminating array
bound checking through dependent types. Available electronically from
http://www.cs.cmu.edu/~fp/papers/bounds97.ps.gz.

Appendix A

Proofs of conuence

In this appendix we prove conuence of Size and Vec. The two proofs are
very similar in structure and we therefore give a detailed description of only
one of them { the one for Size.

A.1 Conuence of Size

Conuence of Size directly follows the conuence of any regular combinatory
reduction system, a theorem proved in [Klop, 1980]. We begin by giving
the de�nition of a combinatory reduction system (CRS from now on) and
stating the conuence theorem for regular CRS's. We then show that the
rewrite relation !sz on Size terms can be embedded in a regular CRS. The
conuence of !sz will then follow.

We start with a number of de�nitions, all of which can be found in
[Klop, 1980].

De�nition A.1.1 The alphabet of a CRS � consists of

1. a countably large set V ar = fx; y; z; : : :g of variables.

2. a set C = fc1; c2; : : :g of constants.

3. a set Mvar = fZk
i ; k; i 2 Ng of meta-variables.

107

APPENDIX A. PROOFS OF CONFLUENCE 108

In the third clause of the previous de�nition, the natural number k is the
arity of Zk

i .

De�nition A.1.2 The terms of a CRS � are given by the following grammar

a; b ::= x j c j [x]:a j a b

where x 2 V ar is a variable and c 2 C a constant. In the last clause a can
not be of the form [x]:a0 for some a0.

Remarks

1. We shall use letters from the beginning of the alphabet to represent
terms of a CRS.

2. Note that meta-variables do not appear in the de�nition of a term.

3. The construct [x]:a binds the variable x in a. The de�nitions of con-
texts, occurrences and substitution are analogous to those given in
Chapter 2 and will not be repeated here.

A CRS provides us with a general variable-binding mechanism [x]:a which
can be used to capture various variable-binding constructs. Thus, for exam-
ple, one could model the abstraction construction of lambda calculi by the
(CRS) term � ([x]:a) (where � 2 C is a constant). Analogously, the recursion
construct can be represented by the term rec [f]:a, where rec 2 C.

De�nition A.1.3 The meta-terms of a CRS � are given by the following
grammar:

h ::= x j c j [x]:h j h h j Zk
i (h; : : : ; h| {z }

k-times

)

where x 2 V ar, c 2 C and Zk
i 2 Mvar. As above, the construction of a

meta-term of the form ([x]:h0) h is not allowed.

Remarks

1. A meta-term h is closed if it has no free variables. Note that a closed
meta-term can still contain meta-variables { we only talk about free
and bound variables.

APPENDIX A. PROOFS OF CONFLUENCE 109

2. We shall use � to denote the syntactic equality of both terms and
meta-terms.

3. The head of a meta-term is de�ned as follows

(a) the head of a variable or a constant is the variable or constant
itself, respectively.

(b) the head of [x]:h is [x].

(c) the head of h1 h2 is the head of h1.

(d) the head of Zk
i (h1; : : : ; hk) is Z

k
i .

De�nition A.1.4 A valuation � assigns to each meta-variable Zk
i a term a

and a list of k pairwise distinct variables x1; : : : ; xk. We will write valuations
in the following form:

�(Zk
i) = a(x1; : : : ; xk) :

A valuation � induces a mapping, also denoted �, from meta-terms to terms
as follows:

�(x) � x
�(c) � c

�([x]:h) � [x]:�(h)
�(h1 h2) � �(h1) �(h2)

�(Zk
i (h1; : : : ; hk)) � a[�(h1)=x1] : : : [�(hk)=xk]

where �(Zk
i) � a(x1; : : : ; xk) :

De�nition A.1.5 A combinatory reduction rule � is a pair of closed meta-
terms h1 and h2 such that

1. the head of h1 is a constant,

2. all meta-variables occurring in h2 occur already in h1,

3. all meta-variables Zk
i in h1 occur in the form Zk

i (x1; : : : ; xk) with vari-
ables x1; : : : ; xk being pairwise distinct.

We shall usually write such a rule as � : h1 ! h2.

APPENDIX A. PROOFS OF CONFLUENCE 110

A reduction rule � : h1 ! h2 induces a reduction relation !� on the set
of terms as follows:

C[�(h1)]!� C[�(h2)]

for every context C and valuation �.

Thus the � reduction of a lambda calculus

(�x:t) t0 ! t[t0=x]

can be represented by the reduction rule

(� [x]:Z1
0 (x)) Z

0
0 ! Z1

0(Z
0
0) :

Similarly, the reduction rec f:t ! t[rec f:t=f] corresponds to

rec [x]:Z1
0 (x) ! Z1

0 (rec [x]:Z
1
0 (x)) :

Red(�) will denote the set of reduction rules of a CRS �. This set induces
a reduction relation!� on the set of terms of � in the obvious way:

C[�(h1)]!� C[�(h2)]

for every rule � : h1 ! h2, context C and valuation �.

Example

Consider the combinatory reduction system
 given as follows:

1. The set of constants of
 is f�; rec; ifsg[C 0 where C 0 is the set of Size
combinators.

2. Red(
) is the set of reduction rules corresponding to the base reduc-

APPENDIX A. PROOFS OF CONFLUENCE 111

tions of Size as follows:

(� [x]:Z1
0 (x)) Z

0
0 ! Z1

0 (Z
0
0)

fst ((pair Z0
0) Z

0
1) ! Z0

0

snd ((pair Z0
0) Z

0
1) ! Z0

1

pred zero ! err

pred (succ Z0
0) ! Z0

0

(eq zero) Z0
0 ! Z0

0

(eq (succ Z0
0)) zero ! succ Z0

0

(eq (succ Z0
0)) (succ Z

0
1) ! (eq Z0

0) Z
0
1

(eq un) un ! zero

(eq ((pair Z0
0) Z

0
1)) ((pair Z

0
2) Z

0
3) !

(� [x]:(� [y]:((ifs x) y) x)) ((eq Z0
0) Z

0
2)) ((eq Z0

1) Z
0
3)

rec [x]:Z1
0 (x) ! Z1

0 (rec [x]:Z
1
0 (x))

((ifs zero) Z0
0) Z

0
1 ! Z0

0

((ifs (succ Z0
2)) Z

0
0) Z

0
1 ! Z0

1

There is the obvious embedding ! of Size terms to
 terms given inductively
as follows:

!(x) � x
!(c) � c for a combinator c

!(�x:t) � � ([x]:!(t))
!(t1 t2) � !(t1) !(t2)

!(rec f:t) � rec ([f]:!(t))
!(ifs t then t1 else t2) � ((ifs !(t)) !(t1)) !(t2)

Since the reduction rules of
 exactly correspond to those in Size, it is
easy to see that whenever t1 !sz t2 then !(t1)!
 !(t2) and that whenever
!(t1)!
 a then there exists a Size term t2 such that a � !(t2).

De�nition A.1.6 A reduction rule � : h1 ! h2 is left-linear if no meta-
variable occurs twice in h1.

De�nition A.1.7 We say that a meta-term h1 does not interfere with a
meta-term h2 if whenever �(h1) is the subterm of �(h2) at occurrence s 6= e
(where � is a valuation), then there is an occurrence s0 of a meta-variable Z

APPENDIX A. PROOFS OF CONFLUENCE 112

in h2 such that s0 is a pre�x of s. In other words, �(h1) is a subterm of (the
valuation of) a meta-variable.

The set Red(�) = f�i : hi ! h0i; i 2 Ig of a CRS � in non-ambiguous if

1. hi 6� hj whenever i 6= j and

2. hi does not interfere with hj for every i; j 2 I.

The non-ambiguity of a set of reduction rules is the CRS's equivalent of
having no critical pairs.

De�nition A.1.8 Let � be a CRS such that every � 2 Red(�) is left-linear
and Red(�) is non-ambiguous. Then � is regular.

It is easy to see that the CRS
 de�ned above is regular.

Theorem A.1.9 Let � be a regular CRS. Then the relation!� is conuent.

Proof. Can be found in [Klop, 1980].

The previous theorem, when considered together with the remarks made
after the example above, gives us the conuence of !sz:

Theorem A.1.10 !sz is conuent.

A.2 Conuence of Vec

The proof of conuence of !vc is analogous to the one given in the previous
section. We extend the set of reduction rules of
 by the rules corresponding
to those added in Vec:

hd (sing Z0
0) ! Z0

0

hd ((cons Z0
0) Z

0
1) ! Z0

0

tl (sing Z0
0) ! err

tl ((cons Z0
0) Z

0
1) ! Z0

1

length (sing Z0
0) ! succ zero

length ((cons Z0
0) Z

0
1) ! succ (length Z0

1)

APPENDIX A. PROOFS OF CONFLUENCE 113

Theorem A.2.1 !vc is conuent.

Proof. It is easy to see that the resulting CRS is still regular, and we can
again embed the reduction relation !vc to this system in the same way as
above. !vc is thus conuent.

Appendix B

Implementation

The methods and techniques presented in this thesis have been implemented
in Standard ML [Harper et al., 1986]. The implementation is available from
http://linus.socs.uts.edu.au/~milan/research.html. It comes in two
�les called shape1.ml and shape2.ml which contain the implementation of
shape analysis as de�ned in Chapters 4 and 5, respectively. The two imple-
mentations are discussed in the following sections.

B.1 Shape analysis to Size

The implementation of the shape analysis from Chapter 4 is available from
http://linus.socs.uts.edu.au/~milan/shape1.ml.

The implementation does not support types (since both Size and Vec

are simply typed, adding types would only increase the complexities of term
representations without signi�cantly helping the programmer). The pro-
grammer is thus responsible for ensuring that ML expressions correspond to
well-typed terms. Moreover, since we showed in Chapter 3 that Size is a
sublanguage of Vec, both Size and Vec terms are represented by the same
ML datatype term.

The main implemented operations are evaluation (eval:term -> term)
and shape analysis (shape:term -> term). Also, a pretty printer has been
implemented as pretty:term -> string. The operation showev:term ->

string evaluates a term and then prints out the resulting value using the

114

APPENDIX B. IMPLEMENTATION 115

pretty printer.

A suite of Size and Vec terms (including all the examples introduced in
the text) is included in the code. Thus, for example, the matrix

mat1 � make ~2 (make ~3 1)

de�ned in Section 3.3 is represented by the expression

val mat1 = app2h(make,pos 2,app2h(make,pos 3,dint 1));

(a description of the term constructors and operations used above can be
found in the source �le). If we evaluate mat1 by running

showev mat1;

the program returns the following (expected) result

[[1,1,1],[1,1,1]]

We can get the shape of mat1 by running

showev (shape mat1);

which returns

<~2,<~3,!>>

Additional, more technical information can be found in the source �le.

B.2 Shape analysis to SizeC

The implementation of the shape analysis from Chapter 5 is available from
http://linus.socs.uts.edu.au/~milan/shape2.ml. It is built along the
same lines as the one described in the previous section. The main addition is
the operation simplify:term -> term which reduces a SizeC term to a nor-
mal form under the!sc reduction. The operation display:term -> string

then prints out the simpli�ed shape of a Vec term. Thus, for example,

APPENDIX B. IMPLEMENTATION 116

display multiply;

returns the simpli�ed shape of matrix multiplication:

Lam a.Lam b.

check fst (snd (a))=fst (b)

then <fst (a),<fst (snd (b)),!>>

Again, an example suite and more detailed technical information is included
with the code.

